forked from HassanAD1/Compt-Graphs-Gradients
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tests.py
192 lines (178 loc) · 5.53 KB
/
tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import TensionFlow as tf
import torch
import numpy as np
#testing all gradients by comparing with pytorch
#test addition
def test_add():
for i in range(100):
a = np.random.rand(10,10)
b = np.random.rand(10,10)
a = tf.Neuron(a)
b = tf.Neuron(b)
c = a+b
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
b1 = torch.tensor(b.value, requires_grad=True)
c1 = a1+b1
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(b.grad, b1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test multiplication
def test_mul():
for i in range(100):
a = np.random.rand(10,10)
b = np.random.rand(10,10)
a = tf.Neuron(a)
b = tf.Neuron(b)
c = a*b
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
b1 = torch.tensor(b.value, requires_grad=True)
c1 = a1*b1
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(b.grad, b1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test matrix multiplication
def test_matmul():
for i in range(100):
a = np.random.rand(10,10)
b = np.random.rand(10,10)
a = tf.Neuron(a)
b = tf.Neuron(b)
c = a@b
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
b1 = torch.tensor(b.value, requires_grad=True)
c1 = a1@b1
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(b.grad, b1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test transpose
def test_transpose():
for i in range(100):
a = np.random.rand(10,10)
a = tf.Neuron(a)
c = a.T
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = a1.T
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test relu
def test_relu():
for i in range(100):
a = np.random.rand(10,10)
a = tf.Neuron(a)
c = tf.ReLU(a)
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = a1.relu()
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test div
def test_div():
for i in range(100):
a = np.random.rand(10,10)
b = np.random.rand(10,10)
a = tf.Neuron(a)
b = tf.Neuron(b)
c = a/b
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
b1 = torch.tensor(b.value, requires_grad=True)
c1 = a1/b1
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(b.grad, b1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test exp
def test_exp():
for i in range(100):
a = np.random.rand(10,10)
a = tf.Neuron(a)
c = a.exp()
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = a1.exp()
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test broadcast
def test_broadcast():
for i in range(100):
a = np.random.rand(10,10)
b = np.random.rand(1,10)
a = tf.Neuron(a)
b = tf.Neuron(b)
c = a+b.broadcast(10)
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
b1 = torch.tensor(b.value, requires_grad=True)
c1 = a1+b1
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(b.grad, b1.grad)
assert np.allclose(c.value, c1.detach().numpy())
#test sum
def test_sum():
for i in range(100):
a = np.random.rand(10,10)
a = tf.Neuron(a)
c = a.sum(dim=0)
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = a1.sum(dim=0)
c1.sum().backward()
assert np.allclose(a.grad, a1.grad)
assert np.allclose(c.value, c1.detach().numpy())
def test_max():
for i in range(100):
a = np.random.rand(10,10)
a = tf.Neuron(a)
c = a.max(dim=0)
c.sum().backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1,_ = a1.max(dim=0)
c1.sum().backward()
assert np.allclose(c.value, c1.detach().numpy())
assert np.allclose(a.grad, a1.grad)
#test softmax
def test_softmax():
for i in range(100):
a = np.random.rand(5,1)
a = tf.Neuron(a)
c = a.softmax(dim=1)
c.sum(None).backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = torch.softmax(a1, dim=1)
c1.sum().backward()
assert np.allclose(a.grad, a1.grad), f"incorrect answer: {a.grad} {a1.grad}"
assert np.allclose(c.value, c1.detach().numpy())
def test_sigmoid():
for i in range(100):
a = np.random.rand(5,1)
a = tf.Neuron(a)
c = tf.Sigmoid(a)
c.sum(None).backward()
a1 = torch.tensor(a.value, requires_grad=True)
c1 = torch.sigmoid(a1)
c1.sum().backward()
assert np.allclose(a.grad, a1.grad), f"incorrect answer: {a.grad} {a1.grad}"
assert np.allclose(c.value, c1.detach().numpy())
if __name__ == "__main__":
test_add()
test_mul()
test_matmul()
test_relu()
test_div()
test_exp()
test_broadcast()
test_max()
test_sigmoid()
test_softmax()
print("All tests passed")