forked from shwoo93/MinkowskiEngine
-
Notifications
You must be signed in to change notification settings - Fork 1
/
setup.py
364 lines (309 loc) · 11.7 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
r"""
Parse additional arguments along with the setup.py arguments such as install, build, distribute, sdist, etc.
Usage:
python setup.py install <additional_flags>..<additional_flags> <additional_arg>=<value>..<additional_arg>=<value>
export CC=<C++ compiler>; python setup.py install <additional_flags>..<additional_flags> <additional_arg>=<value>..<additional_arg>=<value>
Examples:
python setup.py install --force_cuda --cuda_home=/usr/local/cuda
export CC=g++7; python setup.py install --force_cuda --cuda_home=/usr/local/cuda
Additional flags:
--cpu_only: Force building only a CPU version. However, if
torch.cuda.is_available() is False, it will default to CPU_ONLY.
--force_cuda: If torch.cuda.is_available() is false, but you have a working
nvcc, compile cuda files. --force_cuda will supercede --cpu_only.
Additional arguments:
--blas=<value> : type of blas library to use for CPU matrix multiplications.
Options: [openblas, mkl, atlas, blas]. By default, it will use the first
numpy blas library it finds.
--cuda_home=<value> : a directory that contains <value>/bin/nvcc and
<value>/lib64/libcudart.so. By default, use
`torch.utils.cpp_extension._find_cuda_home()`.
--blas_include_dirs=<comma_separated_values> : additional include dirs. Only
activated when --blas=<value> is set.
--blas_library_dirs=<comma_separated_values> : additional library dirs. Only
activated when --blas=<value> is set.
"""
import sys
if sys.version_info < (3, 6):
sys.stdout.write(
"Minkowski Engine requires Python 3.6 or higher. Please use anaconda https://www.anaconda.com/distribution/ for an isolated python environment.\n"
)
sys.exit(1)
try:
import torch
except ImportError:
raise ImportError("Pytorch not found. Please install pytorch first.")
import codecs
import os
import re
import subprocess
import warnings
from pathlib import Path
from sys import argv, platform
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension
if platform == "win32":
raise ImportError("Windows is currently not supported.")
elif platform == "darwin":
# Set the distutils to use clang instead of g++ for valid std
if "CC" not in os.environ:
os.environ["CC"] = "/usr/local/opt/llvm/bin/clang"
here = os.path.abspath(os.path.dirname(__file__))
def read(*parts):
with codecs.open(os.path.join(here, *parts), "r") as fp:
return fp.read()
def find_version(*file_paths):
version_file = read(*file_paths)
version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M)
if version_match:
return version_match.group(1)
raise RuntimeError("Unable to find version string.")
def run_command(*args):
subprocess.check_call(args)
def _argparse(pattern, argv, is_flag=True, is_list=False):
if is_flag:
found = pattern in argv
if found:
argv.remove(pattern)
return found, argv
else:
arr = [arg for arg in argv if pattern == arg.split("=")[0]]
if is_list:
if len(arr) == 0: # not found
return False, argv
else:
assert "=" in arr[0], f"{arr[0]} requires a value."
argv.remove(arr[0])
val = arr[0].split("=")[1]
if "," in val:
return val.split(","), argv
else:
return [val], argv
else:
if len(arr) == 0: # not found
return False, argv
else:
assert "=" in arr[0], f"{arr[0]} requires a value."
argv.remove(arr[0])
return arr[0].split("=")[1], argv
run_command("rm", "-rf", "build")
run_command("pip", "uninstall", "MinkowskiEngine", "-y")
# For cpu only build
CPU_ONLY, argv = _argparse("--cpu_only", argv)
FORCE_CUDA, argv = _argparse("--force_cuda", argv)
if not torch.cuda.is_available() and not FORCE_CUDA:
warnings.warn(
"torch.cuda.is_available() is False. MinkowskiEngine will compile with CPU_ONLY. Please use `--force_cuda` to compile with CUDA."
)
CPU_ONLY = CPU_ONLY or not torch.cuda.is_available()
if FORCE_CUDA:
CPU_ONLY = False
# args with return value
CUDA_HOME, argv = _argparse("--cuda_home", argv, False)
BLAS, argv = _argparse("--blas", argv, False)
BLAS_INCLUDE_DIRS, argv = _argparse("--blas_include_dirs", argv, False, is_list=True)
BLAS_LIBRARY_DIRS, argv = _argparse("--blas_library_dirs", argv, False, is_list=True)
MAX_COMPILATION_THREADS = 12
Extension = CUDAExtension
extra_link_args = []
include_dirs = []
libraries = []
CC_FLAGS = []
NVCC_FLAGS = []
if CPU_ONLY:
print("--------------------------------")
print("| WARNING: CPU_ONLY build set |")
print("--------------------------------")
Extension = CppExtension
else:
print("--------------------------------")
print("| CUDA compilation set |")
print("--------------------------------")
# system python installation
libraries.append("cusparse")
if not (CUDA_HOME is False): # False when not set, str otherwise
print(f"Using CUDA_HOME={CUDA_HOME}")
if sys.platform == "win32":
vc_version = os.getenv("VCToolsVersion", "")
if vc_version.startswith("14.16."):
CC_FLAGS += ["/sdl"]
else:
CC_FLAGS += ["/sdl", "/permissive-"]
else:
CC_FLAGS += ["-fopenmp"]
if "darwin" in platform:
CC_FLAGS += ["-stdlib=libc++", "-std=c++17"]
NVCC_FLAGS += ["--expt-relaxed-constexpr", "--expt-extended-lambda"]
FAST_MATH, argv = _argparse("--fast_math", argv)
if FAST_MATH:
NVCC_FLAGS.append("--use_fast_math")
BLAS_LIST = ["flexiblas", "openblas", "mkl", "atlas", "blas"]
if not (BLAS is False): # False only when not set, str otherwise
assert BLAS in BLAS_LIST, f"Blas option {BLAS} not in valid options {BLAS_LIST}"
if BLAS == "mkl":
libraries.append("mkl_rt")
CC_FLAGS.append("-DUSE_MKL")
NVCC_FLAGS.append("-DUSE_MKL")
else:
libraries.append(BLAS)
if not (BLAS_INCLUDE_DIRS is False):
include_dirs += BLAS_INCLUDE_DIRS
if not (BLAS_LIBRARY_DIRS is False):
extra_link_args += [f"-Wl,-rpath,{BLAS_LIBRARY_DIRS}"]
else:
# find the default BLAS library
import numpy.distutils.system_info as sysinfo
# Search blas in this order
for blas in BLAS_LIST:
if "libraries" in sysinfo.get_info(blas):
BLAS = blas
libraries += sysinfo.get_info(blas)["libraries"]
break
else:
# BLAS not found
raise ImportError(
' \
\nBLAS not found from numpy.distutils.system_info.get_info. \
\nPlease specify BLAS with: python setup.py install --blas=openblas" \
\nfor more information, please visit https://github.com/NVIDIA/MinkowskiEngine/wiki/Installation'
)
print(f"\nUsing BLAS={BLAS}")
# The Ninja cannot compile the files that have the same name with different
# extensions correctly and uses the nvcc/CC based on the extension. Import a
# .cpp file to the corresponding .cu file to force the nvcc compilation.
SOURCE_SETS = {
"cpu": [
CppExtension,
[
"math_functions_cpu.cpp",
"coordinate_map_manager.cpp",
"convolution_cpu.cpp",
"convolution_transpose_cpu.cpp",
"local_pooling_cpu.cpp",
"local_pooling_transpose_cpu.cpp",
"global_pooling_cpu.cpp",
"broadcast_cpu.cpp",
"pruning_cpu.cpp",
"interpolation_cpu.cpp",
"quantization.cpp",
"direct_max_pool.cpp",
],
["pybind/minkowski.cpp"],
["-DCPU_ONLY"],
],
"gpu": [
CUDAExtension,
[
"math_functions_cpu.cpp",
"math_functions_gpu.cu",
"coordinate_map_manager.cu",
"coordinate_map_gpu.cu",
"convolution_kernel.cu",
"convolution_gpu.cu",
"depthwise_convolution_kernel.cu",
"depthwise_convolution_gpu.cu",
"convolution_transpose_gpu.cu",
"pooling_avg_kernel.cu",
"pooling_max_kernel.cu",
"local_pooling_gpu.cu",
"local_pooling_transpose_gpu.cu",
"global_pooling_gpu.cu",
"broadcast_kernel.cu",
"broadcast_gpu.cu",
"pruning_gpu.cu",
"interpolation_gpu.cu",
"spmm.cu",
"gpu.cu",
"quantization.cpp",
"direct_max_pool.cpp",
],
["pybind/minkowski.cu"],
[],
],
}
debug, argv = _argparse("--debug", argv)
HERE = Path(os.path.dirname(__file__)).absolute()
SRC_PATH = HERE / "src"
if "CC" in os.environ or "CXX" in os.environ:
# distutils only checks CC not CXX
if "CXX" in os.environ:
os.environ["CC"] = os.environ["CXX"]
CC = os.environ["CXX"]
else:
CC = os.environ["CC"]
print(f"Using {CC} for c++ compilation")
if torch.__version__ < "1.7.0":
NVCC_FLAGS += [f"-ccbin={CC}"]
else:
print("Using the default compiler")
if debug:
CC_FLAGS += ["-g", "-DDEBUG"]
NVCC_FLAGS += ["-g", "-DDEBUG", "-Xcompiler=-fno-gnu-unique"]
else:
CC_FLAGS += ["-O3"]
NVCC_FLAGS += ["-O3", "-Xcompiler=-fno-gnu-unique"]
if "MAX_JOBS" not in os.environ and os.cpu_count() > MAX_COMPILATION_THREADS:
# Clip the num compilation thread to 8
os.environ["MAX_JOBS"] = str(MAX_COMPILATION_THREADS)
target = "cpu" if CPU_ONLY else "gpu"
Extension = SOURCE_SETS[target][0]
SRC_FILES = SOURCE_SETS[target][1]
BIND_FILES = SOURCE_SETS[target][2]
ARGS = SOURCE_SETS[target][3]
CC_FLAGS += ARGS
NVCC_FLAGS += ARGS
ext_modules = [
Extension(
name="MinkowskiEngineBackend._C",
sources=[*[str(SRC_PATH / src_file) for src_file in SRC_FILES], *BIND_FILES],
extra_compile_args={"cxx": CC_FLAGS, "nvcc": NVCC_FLAGS},
libraries=libraries,
),
]
# Python interface
setup(
name="MinkowskiEngine",
version=find_version("MinkowskiEngine", "__init__.py"),
install_requires=["torch", "numpy"],
packages=["MinkowskiEngine", "MinkowskiEngine.utils", "MinkowskiEngine.modules"],
package_dir={"MinkowskiEngine": "./MinkowskiEngine"},
ext_modules=ext_modules,
include_dirs=[str(SRC_PATH), str(SRC_PATH / "3rdparty"), *include_dirs],
cmdclass={"build_ext": BuildExtension.with_options(use_ninja=True)},
author="Christopher Choy",
author_email="chrischoy@ai.stanford.edu",
description="a convolutional neural network library for sparse tensors",
long_description=read("README.md"),
long_description_content_type="text/markdown",
url="https://github.com/NVIDIA/MinkowskiEngine",
keywords=[
"pytorch",
"Minkowski Engine",
"Sparse Tensor",
"Convolutional Neural Networks",
"3D Vision",
"Deep Learning",
],
zip_safe=False,
classifiers=[
# https: // pypi.org/classifiers/
"Environment :: Console",
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Intended Audience :: Other Audience",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Natural Language :: English",
"Programming Language :: C++",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Topic :: Multimedia :: Graphics",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Scientific/Engineering :: Mathematics",
"Topic :: Scientific/Engineering :: Physics",
"Topic :: Scientific/Engineering :: Visualization",
],
python_requires=">=3.6",
)