-
Notifications
You must be signed in to change notification settings - Fork 0
/
getorf.html
739 lines (615 loc) · 26.4 KB
/
getorf.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
<HTML>
<HEAD>
<TITLE>
EMBOSS: getorf
</TITLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" text="#000000">
<table align=center border=0 cellspacing=0 cellpadding=0>
<tr><td valign=top>
<A HREF="/" ONMOUSEOVER="self.status='Go to the EMBOSS home page';return true"><img border=0 src="emboss_icon.jpg" alt="" width=150 height=48></a>
</td>
<td align=left valign=middle>
<b><font size="+6">
getorf
</font></b>
</td></tr>
</table>
<br>
<p>
<H2>
Function
</H2>
Finds and extracts open reading frames (ORFs)
<H2>
Description
</H2>
This program finds and outputs the sequences of open reading frames
(ORFs).
<p>
The ORFs can be defined as regions of a specified minimum size between
STOP codons or between START and STOP codons.
<p>
The ORFs can be output as the nucleotide sequence or as the translation.
<p>
The program can also output the region around the START or the initial
STOP codon or the ending STOP codons of an ORF for those doing analysis
of the properties of these regions.
<p>
The START and STOP codons are defined in the Genetic Code tables.
A suitable Genetic Code table can be selected for the organism you are
investigating.
<H2>
Usage
</H2>
<b>Here is a sample session with getorf</b>
<p>
<p>
<table width="90%"><tr><td bgcolor="#CCFFFF"><pre>
% <b>getorf -minsize 300 </b>
Finds and extracts open reading frames (ORFs)
Input nucleotide sequence(s): <b>tembl:v00294</b>
protein output sequence(s) [v00294.orf]: <b></b>
</pre></td></tr></table><p>
<p>
<a href="#input.1">Go to the input files for this example</a><br><a href="#output.1">Go to the output files for this example</a><p><p>
<H2>
Command line arguments
</H2>
<table CELLSPACING=0 CELLPADDING=3 BGCOLOR="#f5f5ff" ><tr><td>
<pre>
Standard (Mandatory) qualifiers:
[-sequence] seqall Nucleotide sequence(s) filename and optional
format, or reference (input USA)
[-outseq] seqoutall [<sequence>.<format>] Protein sequence
set(s) filename and optional format (output
USA)
Additional (Optional) qualifiers:
-table menu [0] Code to use (Values: 0 (Standard); 1
(Standard (with alternative initiation
codons)); 2 (Vertebrate Mitochondrial); 3
(Yeast Mitochondrial); 4 (Mold, Protozoan,
Coelenterate Mitochondrial and
Mycoplasma/Spiroplasma); 5 (Invertebrate
Mitochondrial); 6 (Ciliate Macronuclear and
Dasycladacean); 9 (Echinoderm
Mitochondrial); 10 (Euplotid Nuclear); 11
(Bacterial); 12 (Alternative Yeast Nuclear);
13 (Ascidian Mitochondrial); 14 (Flatworm
Mitochondrial); 15 (Blepharisma
Macronuclear); 16 (Chlorophycean
Mitochondrial); 21 (Trematode
Mitochondrial); 22 (Scenedesmus obliquus);
23 (Thraustochytrium Mitochondrial))
-minsize integer [30] Minimum nucleotide size of ORF to
report (Any integer value)
-maxsize integer [1000000] Maximum nucleotide size of ORF to
report (Any integer value)
-find menu [0] This is a small menu of possible output
options. The first four options are to
select either the protein translation or the
original nucleic acid sequence of the open
reading frame. There are two possible
definitions of an open reading frame: it can
either be a region that is free of STOP
codons or a region that begins with a START
codon and ends with a STOP codon. The last
three options are probably only of interest
to people who wish to investigate the
statistical properties of the regions around
potential START or STOP codons. The last
option assumes that ORF lengths are
calculated between two STOP codons. (Values:
0 (Translation of regions between STOP
codons); 1 (Translation of regions between
START and STOP codons); 2 (Nucleic sequences
between STOP codons); 3 (Nucleic sequences
between START and STOP codons); 4
(Nucleotides flanking START codons); 5
(Nucleotides flanking initial STOP codons);
6 (Nucleotides flanking ending STOP codons))
Advanced (Unprompted) qualifiers:
-[no]methionine boolean [Y] START codons at the beginning of protein
products will usually code for Methionine,
despite what the codon will code for when it
is internal to a protein. This qualifier
sets all such START codons to code for
Methionine by default.
-circular boolean [N] Is the sequence circular
-[no]reverse boolean [Y] Set this to be false if you do not wish
to find ORFs in the reverse complement of
the sequence.
-flanking integer [100] If you have chosen one of the options
of the type of sequence to find that gives
the flanking sequence around a STOP or START
codon, this allows you to set the number of
nucleotides either side of that codon to
output. If the region of flanking
nucleotides crosses the start or end of the
sequence, no output is given for this codon.
(Any integer value)
Associated qualifiers:
"-sequence" associated qualifiers
-sbegin1 integer Start of each sequence to be used
-send1 integer End of each sequence to be used
-sreverse1 boolean Reverse (if DNA)
-sask1 boolean Ask for begin/end/reverse
-snucleotide1 boolean Sequence is nucleotide
-sprotein1 boolean Sequence is protein
-slower1 boolean Make lower case
-supper1 boolean Make upper case
-sformat1 string Input sequence format
-sdbname1 string Database name
-sid1 string Entryname
-ufo1 string UFO features
-fformat1 string Features format
-fopenfile1 string Features file name
"-outseq" associated qualifiers
-osformat2 string Output seq format
-osextension2 string File name extension
-osname2 string Base file name
-osdirectory2 string Output directory
-osdbname2 string Database name to add
-ossingle2 boolean Separate file for each entry
-oufo2 string UFO features
-offormat2 string Features format
-ofname2 string Features file name
-ofdirectory2 string Output directory
General qualifiers:
-auto boolean Turn off prompts
-stdout boolean Write standard output
-filter boolean Read standard input, write standard output
-options boolean Prompt for standard and additional values
-debug boolean Write debug output to program.dbg
-verbose boolean Report some/full command line options
-help boolean Report command line options. More
information on associated and general
qualifiers can be found with -help -verbose
-warning boolean Report warnings
-error boolean Report errors
-fatal boolean Report fatal errors
-die boolean Report dying program messages
</pre>
</td></tr></table>
<P>
<table border cellspacing=0 cellpadding=3 bgcolor="#ccccff">
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Standard (Mandatory) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>[-sequence]<br>(Parameter 1)</td>
<td>Nucleotide sequence(s) filename and optional format, or reference (input USA)</td>
<td>Readable sequence(s)</td>
<td><b>Required</b></td>
</tr>
<tr>
<td>[-outseq]<br>(Parameter 2)</td>
<td>Protein sequence set(s) filename and optional format (output USA)</td>
<td>Writeable sequence(s)</td>
<td><i><*></i>.<i>format</i></td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Additional (Optional) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-table</td>
<td>Code to use</td>
<td><table><tr><td>0</td> <td><i>(Standard)</i></td></tr><tr><td>1</td> <td><i>(Standard (with alternative initiation codons))</i></td></tr><tr><td>2</td> <td><i>(Vertebrate Mitochondrial)</i></td></tr><tr><td>3</td> <td><i>(Yeast Mitochondrial)</i></td></tr><tr><td>4</td> <td><i>(Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma)</i></td></tr><tr><td>5</td> <td><i>(Invertebrate Mitochondrial)</i></td></tr><tr><td>6</td> <td><i>(Ciliate Macronuclear and Dasycladacean)</i></td></tr><tr><td>9</td> <td><i>(Echinoderm Mitochondrial)</i></td></tr><tr><td>10</td> <td><i>(Euplotid Nuclear)</i></td></tr><tr><td>11</td> <td><i>(Bacterial)</i></td></tr><tr><td>12</td> <td><i>(Alternative Yeast Nuclear)</i></td></tr><tr><td>13</td> <td><i>(Ascidian Mitochondrial)</i></td></tr><tr><td>14</td> <td><i>(Flatworm Mitochondrial)</i></td></tr><tr><td>15</td> <td><i>(Blepharisma Macronuclear)</i></td></tr><tr><td>16</td> <td><i>(Chlorophycean Mitochondrial)</i></td></tr><tr><td>21</td> <td><i>(Trematode Mitochondrial)</i></td></tr><tr><td>22</td> <td><i>(Scenedesmus obliquus)</i></td></tr><tr><td>23</td> <td><i>(Thraustochytrium Mitochondrial)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr>
<td>-minsize</td>
<td>Minimum nucleotide size of ORF to report</td>
<td>Any integer value</td>
<td>30</td>
</tr>
<tr>
<td>-maxsize</td>
<td>Maximum nucleotide size of ORF to report</td>
<td>Any integer value</td>
<td>1000000</td>
</tr>
<tr>
<td>-find</td>
<td>This is a small menu of possible output options. The first four options are to select either the protein translation or the original nucleic acid sequence of the open reading frame. There are two possible definitions of an open reading frame: it can either be a region that is free of STOP codons or a region that begins with a START codon and ends with a STOP codon. The last three options are probably only of interest to people who wish to investigate the statistical properties of the regions around potential START or STOP codons. The last option assumes that ORF lengths are calculated between two STOP codons.</td>
<td><table><tr><td>0</td> <td><i>(Translation of regions between STOP codons)</i></td></tr><tr><td>1</td> <td><i>(Translation of regions between START and STOP codons)</i></td></tr><tr><td>2</td> <td><i>(Nucleic sequences between STOP codons)</i></td></tr><tr><td>3</td> <td><i>(Nucleic sequences between START and STOP codons)</i></td></tr><tr><td>4</td> <td><i>(Nucleotides flanking START codons)</i></td></tr><tr><td>5</td> <td><i>(Nucleotides flanking initial STOP codons)</i></td></tr><tr><td>6</td> <td><i>(Nucleotides flanking ending STOP codons)</i></td></tr></table></td>
<td>0</td>
</tr>
<tr bgcolor="#FFFFCC">
<th align="left" colspan=2>Advanced (Unprompted) qualifiers</th>
<th align="left">Allowed values</th>
<th align="left">Default</th>
</tr>
<tr>
<td>-[no]methionine</td>
<td>START codons at the beginning of protein products will usually code for Methionine, despite what the codon will code for when it is internal to a protein. This qualifier sets all such START codons to code for Methionine by default.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-circular</td>
<td>Is the sequence circular</td>
<td>Boolean value Yes/No</td>
<td>No</td>
</tr>
<tr>
<td>-[no]reverse</td>
<td>Set this to be false if you do not wish to find ORFs in the reverse complement of the sequence.</td>
<td>Boolean value Yes/No</td>
<td>Yes</td>
</tr>
<tr>
<td>-flanking</td>
<td>If you have chosen one of the options of the type of sequence to find that gives the flanking sequence around a STOP or START codon, this allows you to set the number of nucleotides either side of that codon to output. If the region of flanking nucleotides crosses the start or end of the sequence, no output is given for this codon.</td>
<td>Any integer value</td>
<td>100</td>
</tr>
</table>
<H2>
Input file format
</H2>
<b>getorf</b> reads any nucleic acid sequence USA.
<p>
<a name="input.1"></a>
<h3>Input files for usage example </h3>
'tembl:v00294' is a sequence entry in the example nucleic acid database 'tembl'
<p>
<p><h3>Database entry: tembl:v00294</h3>
<table width="90%"><tr><td bgcolor="#FFCCFF">
<pre>
ID V00294; SV 1; linear; genomic DNA; STD; PRO; 1113 BP.
XX
AC V00294;
XX
DT 09-JUN-1982 (Rel. 01, Created)
DT 10-FEB-1999 (Rel. 58, Last updated, Version 2)
XX
DE E. coli laci gene (codes for the lac repressor).
XX
KW DNA binding protein; repressor.
XX
OS Escherichia coli
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC Enterobacteriaceae; Escherichia.
XX
RN [1]
RP 1-1113
RX DOI; 10.1038/274765a0.
RX PUBMED; 355891.
RA Farabaugh P.J.;
RT "Sequence of the lacI gene";
RL Nature 274(5673):765-769(1978).
XX
CC KST ECO.LACI
XX
FH Key Location/Qualifiers
FH
FT source 1..1113
FT /organism="Escherichia coli"
FT /mol_type="genomic DNA"
FT /db_xref="taxon:562"
FT CDS 31..1113
FT /transl_table=11
FT /note="reading frame"
FT /db_xref="GOA:P03023"
FT /db_xref="PDB:1CJG"
FT /db_xref="PDB:1EFA"
FT /db_xref="PDB:1JWL"
FT /db_xref="PDB:1JYE"
FT /db_xref="PDB:1JYF"
FT /db_xref="PDB:1L1M"
FT /db_xref="PDB:1LBG"
FT /db_xref="PDB:1LBH"
FT /db_xref="PDB:1LBI"
FT /db_xref="PDB:1LCC"
FT /db_xref="PDB:1LCD"
FT /db_xref="PDB:1LQC"
FT /db_xref="PDB:1LTP"
FT /db_xref="PDB:1TLF"
FT /db_xref="PDB:2BJC"
FT /db_xref="UniProtKB/Swiss-Prot:P03023"
FT /protein_id="CAA23569.1"
FT /translation="MKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAMAEL
FT NYIPNRVAQQLAGKQSLLIGVATSSLALHAPSQIVAAIKSRADQLGASVVVSMVERSGV
FT EACKAAVHNLLAQRVSGLIINYPLDDQDAIAVEAACTNVPALFLDVSDQTPINSIIFSH
FT EDGTRLGVEHLVALGHQQIALLAGPLSSVSARLRLAGWHKYLTRNQIQPIAEREGDWSA
FT MSGFQQTMQMLNEGIVPTAMLVANDQMALGAMRAITESGLRVGADISVVGYDDTEDSSC
FT YIPPSTTIKQDFRLLGQTSVDRLLQLSQGQAVKGNQLLPVSLVKRKTTLAPNTQTASPR
FT ALADSLMQLARQVSRLESGQ"
XX
SQ Sequence 1113 BP; 249 A; 304 C; 322 G; 238 T; 0 other;
ccggaagaga gtcaattcag ggtggtgaat gtgaaaccag taacgttata cgatgtcgca 60
gagtatgccg gtgtctctta tcagaccgtt tcccgcgtgg tgaaccaggc cagccacgtt 120
tctgcgaaaa cgcgggaaaa agtggaagcg gcgatggcgg agctgaatta cattcccaac 180
cgcgtggcac aacaactggc gggcaaacag tcgttgctga ttggcgttgc cacctccagt 240
ctggccctgc acgcgccgtc gcaaattgtc gcggcgatta aatctcgcgc cgatcaactg 300
ggtgccagcg tggtggtgtc gatggtagaa cgaagcggcg tcgaagcctg taaagcggcg 360
gtgcacaatc ttctcgcgca acgcgtcagt gggctgatca ttaactatcc gctggatgac 420
caggatgcca ttgctgtgga agctgcctgc actaatgttc cggcgttatt tcttgatgtc 480
tctgaccaga cacccatcaa cagtattatt ttctcccatg aagacggtac gcgactgggc 540
gtggagcatc tggtcgcatt gggtcaccag caaatcgcgc tgttagcggg cccattaagt 600
tctgtctcgg cgcgtctgcg tctggctggc tggcataaat atctcactcg caatcaaatt 660
cagccgatag cggaacggga aggcgactgg agtgccatgt ccggttttca acaaaccatg 720
caaatgctga atgagggcat cgttcccact gcgatgctgg ttgccaacga tcagatggcg 780
ctgggcgcaa tgcgcgccat taccgagtcc gggctgcgcg ttggtgcgga tatctcggta 840
gtgggatacg acgataccga agacagctca tgttatatcc cgccgtcaac caccatcaaa 900
caggattttc gcctgctggg gcaaaccagc gtggaccgct tgctgcaact ctctcagggc 960
caggcggtga agggcaatca gctgttgccc gtctcactgg tgaaaagaaa aaccaccctg 1020
gcgcccaata cgcaaaccgc ctctccccgc gcgttggccg attcattaat gcagctggca 1080
cgacaggttt cccgactgga aagcgggcag tga 1113
//
</pre>
</td></tr></table><p>
<H2>
Output file format
</H2>
The output is a sequence file containing predicted open reading frames
longer than the minimum size, which defaults to 30 bases (i.e. 10 amino acids).
<p>
<a name="output.1"></a>
<h3>Output files for usage example </h3>
<p><h3>File: v00294.orf</h3>
<table width="90%"><tr><td bgcolor="#CCFFCC">
<pre>
>V00294_1 [735 - 1112] E. coli laci gene (codes for the lac repressor).
GHRSHCDAGCQRSDGAGRNARHYRVRAARWCGYLGSGIRRYRRQLMLYPAVNHHQTGFSP
AGANQRGPLAATLSGPGGEGQSAVARLTGEKKNHPGAQYANRLSPRVGRFINAAGTTGFP
TGKRAV
>V00294_2 [1 - 1110] E. coli laci gene (codes for the lac repressor).
PEESQFRVVNVKPVTLYDVAEYAGVSYQTVSRVVNQASHVSAKTREKVEAAMAELNYIPN
RVAQQLAGKQSLLIGVATSSLALHAPSQIVAAIKSRADQLGASVVVSMVERSGVEACKAA
VHNLLAQRVSGLIINYPLDDQDAIAVEAACTNVPALFLDVSDQTPINSIIFSHEDGTRLG
VEHLVALGHQQIALLAGPLSSVSARLRLAGWHKYLTRNQIQPIAEREGDWSAMSGFQQTM
QMLNEGIVPTAMLVANDQMALGAMRAITESGLRVGADISVVGYDDTEDSSCYIPPSTTIK
QDFRLLGQTSVDRLLQLSQGQAVKGNQLLPVSLVKRKTTLAPNTQTASPRALADSLMQLA
RQVSRLESGQ*
>V00294_3 [465 - 49] (REVERSE SENSE) E. coli laci gene (codes for the lac repressor).
RRNISAGSFHSNGILVIQRIVNDQPTDALREKIVHRRFTGFDAASFYHRHHHAGTQLIGA
RFNRRDNLRRRVQGQTGGGNANQQRLFARQLLCHAVGNVIQLRHRRFHFFPRFRRNVAGL
VHHAGNGLIRDTGILCDIV
</pre>
</td></tr></table><p>
<p>
The name of the ORF sequences is constructed from the name of the
input sequence with an underscore character ('_') and a unique ordinal number
of the ORF found appended. The description of the output ORF sequence
is constructed from the description of the input sequence with the start
and end positions of the ORF prepended.
<p>
The unique number appended to the name is simply used to create new
unique sequence names, it does not imply any further information
indicating any order, positioning or sense-strand of the ORFs.
<p>
If the ORF has been found in the reverse sense, then the start position
will be smaller than the end position. The numbering uses the
forward-sense positions, but read in the reverse sense. For example,
<b>>ECLACI_3 [465 - 49]</b> in the output above is a reverse-sense
ORF running from position 465 to 49. The description will also contain
'(REVERSE SENSE)'.
<p>
If the sequence has been specified as a circular genome (using the
command-line switch '-circular'), then ORFs can potentially continue
past the 'end' of the input sequence (the breakpoint of the circular
genome) and into the 'start' of the sequence again. This is dealt with
by appending the sequence to itself three times and reporting long ORFs
that are found in this extended sequence. Any ORF that is longer that
three times the sequence length (i.e one that continues without hitting
a STOP at any point in the genome) will be reported as being a maximum
of three times the length of the input sequence. Note that the end
position of an ORF in circular genomes can be apparently longer than the
input sequence if the ORF crosses the breakpoint. If the ORF crosses
the breakpoint, then the text '(ORF crosses the breakpoint)' will be
added to the description of the output sequence.
<H2>
Data files
</H2>
The START and STOP codons used by <b>getorf</b> are defined in the
Genetic Code data files. By default, Genetic Code file <b>EGC.0</b>
is used.
<p>
The default file <b>EGC.0</b> is the 'Standard Code' with the rarely
used alternate START codons omitted, it only has the normal 'AUG' START
codon. The 'Standard Code' with the rarely used alternate START codons
included is Genetic Code file <b>EGC.1</b>.
<p>
It is expected that user will sometimes wish to customise a Genetic Code
file. To do this, use the program <b>embossdata</b>.
<p>
<p>
EMBOSS data files are distributed with the application and stored
in the standard EMBOSS data directory, which is defined
by the EMBOSS environment variable EMBOSS_DATA.
<p>
To see the available EMBOSS data files, run:
<p>
<pre>
% embossdata -showall
</pre>
<p>
To fetch one of the data files (for example 'Exxx.dat') into your
current directory for you to inspect or modify, run:
<pre>
% embossdata -fetch -file Exxx.dat
</pre>
<p>
Users can provide their own data files in their own directories.
Project specific files can be put in the current directory, or for
tidier directory listings in a subdirectory called
".embossdata". Files for all EMBOSS runs can be put in the user's home
directory, or again in a subdirectory called ".embossdata".
<p>
The directories are searched in the following order:
<ul>
<li> . (your current directory)
<li> .embossdata (under your current directory)
<li> ~/ (your home directory)
<li> ~/.embossdata
</ul>
<p>
<p>
The Genetic Code data files are based on the NCBI genetic code tables.
Their names and descriptions are:
<dl>
<dt>EGC.0 </dt><dd>
Standard (Differs from GC.1 in that it only has initiation site 'AUG')
<dt>EGC.1 </dt><dd>
Standard
<dt>EGC.2 </dt><dd>
Vertebrate Mitochodrial
<dt>EGC.3 </dt><dd>
Yeast Mitochondrial
<dt>EGC.4 </dt><dd>
Mold, Protozoan, Coelenterate Mitochondrial and Mycoplasma/Spiroplasma
<dt>EGC.5 </dt><dd>
Invertebrate Mitochondrial
<dt>EGC.6 </dt><dd>
Ciliate Macronuclear and Dasycladacean
<dt>EGC.9 </dt><dd>
Echinoderm Mitochondrial
<dt>EGC.10 </dt><dd>
Euplotid Nuclear
<dt>EGC.11 </dt><dd>
Bacterial
<dt>EGC.12 </dt><dd>
Alternative Yeast Nuclear
<dt>EGC.13 </dt><dd>
Ascidian Mitochondrial
<dt>EGC.14 </dt><dd>
Flatworm Mitochondrial
<dt>EGC.15</dt><dd>
Blepharisma Macronuclear
<dt>EGC.16</dt><dd>
Chlorophycean Mitochondrial
<dt>EGC.21</dt><dd>
Trematode Mitochondrial
<dt>EGC.22</dt><dd>
Scenedesmus obliquus
<dt>EGC.23</dt><dd>
Thraustochytrium Mitochondrial
</dl>
<p>
The format of these files is very simple.
<p>
It consists of several lines of optional comments, each starting with
a '#' character.
<p>
These are followed the line: 'Genetic Code [n]', where 'n' is the
number of the genetic code file.
<p>
This is followed by the description of the code and then by four lines
giving the IUPAC one-letter code of the translated amino acid, the
start codons (indicdated by an 'M') and the three bases of the codon,
lined up one on top of the other.
<p>
For example:
<pre>
------------------------------------------------------------------------------
# Genetic Code Table
#
# Obtained from: http://www.ncbi.nlm.nih.gov/collab/FT/genetic_codes.html
# and: http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wprintgc?mode=c
#
# Differs from Genetic Code [1] only in that the initiation sites have been
# changed to only 'AUG'
Genetic Code [0]
Standard
AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG
Starts = -----------------------------------M----------------------------
Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG
Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG
Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
------------------------------------------------------------------------------
</pre>
<H2>
Notes
</H2>
If you have selected one of the options to report a regions around a
START or STOP codon, then note that any such region that crosses the
beginning or end of the sequence will not be reported.
<H2>
References
</H2>
None.
<H2>
Warnings
</H2>
None.
<H2>
Diagnostic Error Messages
</H2>
None.
<H2>
Exit status
</H2>
It always exits with status 0.
<H2>
Known bugs
</H2>
'-sbegin' and -send' do not work with this program.
<h2><a name="See also">See also</a></h2>
<table border cellpadding=4 bgcolor="#FFFFF0">
<tr><th>Program name</th><th>Description</th></tr>
<tr>
<td><a href="marscan.html">marscan</a></td>
<td>Finds MAR/SAR sites in nucleic sequences</td>
</tr>
<tr>
<td><a href="plotorf.html">plotorf</a></td>
<td>Plot potential open reading frames</td>
</tr>
<tr>
<td><a href="showorf.html">showorf</a></td>
<td>Pretty output of DNA translations</td>
</tr>
<tr>
<td><a href="sixpack.html">sixpack</a></td>
<td>Display a DNA sequence with 6-frame translation and ORFs</td>
</tr>
<tr>
<td><a href="syco.html">syco</a></td>
<td>Synonymous codon usage Gribskov statistic plot</td>
</tr>
<tr>
<td><a href="tcode.html">tcode</a></td>
<td>Fickett TESTCODE statistic to identify protein-coding DNA</td>
</tr>
<tr>
<td><a href="wobble.html">wobble</a></td>
<td>Wobble base plot</td>
</tr>
</table>
<P>
<ul>
<li><a href="checktrans.html">checktrans</a> - Reports STOP codons
and ORF statistics of a protein sequence
</ul>
<H2>
Author(s)
</H2>
Gary Williams (gwilliam © rfcgr.mrc.ac.uk)
<br>
MRC Rosalind Franklin Centre for Genomics Research
Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
<H2>
History
</H2>
2000 - written - Gary Williams
<p>
November 2002 - added indication of reverse sense ORFs
<p>
November 2002 - added indication of ORFs that cross the breakpoint at
position 1 in circular genomes.
<H2>
Target users
</H2>
This program is intended to be used by everyone and everything, from naive users to embedded scripts.
<H2>
Comments
</H2>
None
</BODY>
</HTML>