diff --git a/doc/intro.xml b/doc/intro.xml index f6df25d..91e6444 100644 --- a/doc/intro.xml +++ b/doc/intro.xml @@ -30,11 +30,10 @@ how to use the main high-level functions provided by &LINS;.

We compute all normal subgroups in D_{50}, the dihedral group of size 50. n := 50;; -gap> G := DihedralGroup(n); +gap> G := DihedralGroup(50); gap> L := LowIndexNormalSubs(G, n);; -gap> IsoTypes := List(L, H -> StructureDescription(H)); +gap> IsoTypes := List(L, StructureDescription); [ "D50", "C25", "C5", "1" ] ]]> @@ -46,13 +45,10 @@ gap> IsoTypes := List(L, H -> StructureDescription(H)); We compute all normal subgroups of index 5^2 = 25 in C_5^4, the direct product of 4 copies of the cyclic group of order 5: p := 5;; -gap> d := 4;; -gap> C := CyclicGroup(5);; -gap> G := DirectProduct(ListWithIdenticalEntries(d, C)); +gap> G := ElementaryAbelianGroup(5^4); gap> L := LowIndexNormalSubs(G, 5 ^ 2 : allSubgroups := false);; -gap> IsoTypes := Collected(List(L, H -> StructureDescription(H))); +gap> IsoTypes := Collected(List(L, StructureDescription)); [ [ "C5 x C5", 806 ] ] ]]> @@ -63,7 +59,7 @@ gap> IsoTypes := Collected(List(L, H -> StructureDescription(H)));

Main Functions -In this section, we include all the main high-level functions provided to the User. +In this section, we include all the main high-level functions provided to the user. For advanced search methods in the lattice of normal subgroups, take a look at Chapter .

<#Include Label="LowIndexNormalSubs"> diff --git a/doc/lins_interface.xml b/doc/lins_interface.xml index 17bd253..50a93c2 100644 --- a/doc/lins_interface.xml +++ b/doc/lins_interface.xml @@ -94,8 +94,7 @@ For this we revise the examples from the introduction as well as include new one We compute all normal subgroups in D_{50}, the dihedral group of size 50. n := 50;; -gap> G := DihedralGroup(n); +gap> G := DihedralGroup(50); ]]> @@ -136,10 +135,7 @@ gap> IsoTypes := List(L, node -> StructureDescription(Grp(node))); We compute all normal subgroups of index 5^2 = 25 in C_5^4, the direct product of 4 copies of the cyclic group of order 5: p := 5;; -gap> d := 4;; -gap> C := CyclicGroup(5);; -gap> G := DirectProduct(ListWithIdenticalEntries(d, C)); +gap> G := ElementaryAbelianGroup(5^4);; ]]> @@ -183,9 +179,8 @@ We compute a normal subgroup of index 3 \cdot 5 = 15 in C_3 \times C_3 \times C_4 \times C_5, a direct product of cyclic groups: pList := [3, 3, 4, 5];; -gap> G := DirectProduct(List(pList, p -> CyclicGroup(p))); - +gap> G := AbelianGroup([3, 3, 4, 5]); + gap> gr := LowIndexNormalSubgroupsSearchForIndex(G, 15, 1); ]]>