diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 9a96cfc4c99de..f2986c6ce6b28 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -32,63 +32,52 @@ #include #include #include +#include #include static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) { - // static RNG initialization (revisit if n_threads stops being constant) - static const size_t n_threads = std::thread::hardware_concurrency(); - static std::vector generators = []() { - std::random_device rd; - std::vector vec; - vec.reserve(n_threads); - //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed - for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); } - return vec; - }(); - - size_t size = ggml_nelements(tensor); - std::vector data(size); + size_t nels = ggml_nelements(tensor); + std::vector data(nels); + { + // parallel initialization + static const size_t n_threads = std::thread::hardware_concurrency(); + // static RNG initialization (revisit if n_threads stops being constant) + static std::vector generators = []() { + std::random_device rd; + std::vector vec; + vec.reserve(n_threads); + //for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed + for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); } + return vec; + }(); + + auto init_thread = [&](size_t ith, size_t start, size_t end) { + std::uniform_real_distribution distribution(min, max); + auto & gen = generators[ith]; + for (size_t i = start; i < end; i++) { + data[i] = distribution(gen); + } + }; - auto init_thread = [&](size_t ith, size_t start, size_t end) { - std::uniform_real_distribution distribution(min, max); - for (size_t i = start; i < end; i++) { - data[i] = distribution(generators[ith]); + std::vector> tasks; + tasks.reserve(n_threads); + for (size_t i = 0; i < n_threads; i++) { + size_t start = i*nels/n_threads; + size_t end = (i+1)*nels/n_threads; + tasks.push_back(std::async(std::launch::async, init_thread, i, start, end)); } - }; - - std::vector threads; - threads.reserve(n_threads); - for (size_t i = 0; i < n_threads; i++) { - size_t start = i*size/n_threads; - size_t end = (i+1)*size/n_threads; - threads.emplace_back(init_thread, i, start, end); - } - for (auto & t : threads) { - t.join(); - } - -#if 0 - const char * val_str = getenv("GGML_TEST_EPS"); - float val = 1e-9f; - if (val_str != nullptr) { - val = std::stof(val_str); - printf("GGML_TEST_EPS=%e\n", val); - } - - // test quantization with very small values that may result in nan scales due to division by zero - if (ggml_is_quantized(tensor->type)) { - for (int i = 0; i < 256; i++) { - data[i] = val; + for (auto & t : tasks) { + t.get(); } } -#endif if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) { - ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float)); + ggml_backend_tensor_set(tensor, data.data(), 0, nels * sizeof(float)); } else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16 || tensor->type == GGML_TYPE_BF16) { - GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0); - std::vector dataq(ggml_row_size(tensor->type, size)); - std::vector imatrix(tensor->ne[0], 1.0f); // dummy importance matrix + GGML_ASSERT(nels % ggml_blck_size(tensor->type) == 0); + + // dummy importance matrix + std::vector imatrix(tensor->ne[0], 1.0f); const float * im = imatrix.data(); if (!ggml_quantize_requires_imatrix(tensor->type)) { // when the imatrix is optional, we want to test both quantization with and without imatrix @@ -98,15 +87,31 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m } } - ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im); - GGML_ASSERT(ggml_validate_row_data(tensor->type, dataq.data(), dataq.size())); - // TODO: other cases - //#pragma omp parallel for - //for (int i = 0; i < tensor->ne[1]; i++) { - // ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), - // i * tensor->ne[0], 1, tensor->ne[0], im); - //} - + std::vector dataq(ggml_row_size(tensor->type, nels)); + { + // parallel quantization by block + size_t blck_size = ggml_blck_size(tensor->type); + size_t n_blocks = nels / blck_size; + + auto quantize_thread = [&](size_t start, size_t end) { + ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), + start * blck_size, end - start, blck_size, im); + }; + + const size_t min_blocks_per_thread = 1; + const size_t n_threads = std::min(std::thread::hardware_concurrency()/2, + std::max(1, n_blocks / min_blocks_per_thread)); + std::vector> tasks; + tasks.reserve(n_threads); + for (size_t i = 0; i < n_threads; i++) { + size_t start = i*n_blocks/n_threads; + size_t end = (i+1)*n_blocks/n_threads; + tasks.push_back(std::async(std::launch::async, quantize_thread, start, end)); + } + for (auto & t : tasks) { + t.get(); + } + } ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size()); } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. @@ -160,60 +165,6 @@ static std::vector tensor_to_float(const ggml_tensor * t) { return tv; } -/* -static double cosine_similarity(const float * v1, const float * v2, size_t n) { - double dot = 0.0; - double mag1 = 0.0; - double mag2 = 0.0; - - for (size_t i = 0; i < n; i++) { - if (std::isnan(v1[i]) || std::isnan(v2[i])) { - return -1.0f; - } - if (std::isinf(v1[i]) && std::isinf(v2[i])) { - continue; - } - dot += v1[i]*v2[i]; - mag1 += v1[i]*v1[i]; - mag2 += v2[i]*v2[i]; - } - - return dot/sqrt(mag1*mag2); -} - -static float distance(const float * v1, const float * v2, size_t n) { - double d = 0.0; - - for (size_t i = 0; i < n; i++) { - if (std::isnan(v1[i]) || std::isnan(v2[i])) { - return INFINITY; - } - if (std::isinf(v1[i]) && std::isinf(v2[i])) { - continue; - } - d += (v1[i] - v2[i])*(v1[i] - v2[i]); - } - - return sqrt(d); -} - -static float vec_len(const float * v, size_t n) { - double d = 0.0; - - for (size_t i = 0; i < n; i++) { - if (std::isnan(v[i])) { - return INFINITY; - } - if (std::isinf(v[i])) { - continue; - } - d += v[i]*v[i]; - } - - return sqrt(d); -} -*/ - // normalized mean squared error = mse(a, b) / mse(a, 0) static double nmse(const float * a, const float * b, size_t n) { double mse_a_b = 0.0; @@ -264,7 +215,6 @@ static double mean_abs_asymm(const float * a, const float * b, const size_t n, c } // utils for printing the variables of the test cases -#define VAR_TO_STR(x) (#x "=" + var_to_str(x)) template static std::string var_to_str(const T & x) { @@ -297,10 +247,6 @@ static std::string var_to_str(const std::array & x) { return s; } -//static std::string var_to_str(ggml_unary_op unary_op) { -// return ggml_unary_op_name(unary_op); -//} - static std::string var_to_str(ggml_type type) { return ggml_type_name(type); } @@ -313,6 +259,8 @@ static std::string var_to_str(ggml_op_pool pool) { } } +#define VAR_TO_STR(x) (#x "=" + var_to_str(x)) + #define VARS_TO_STR1(a) VAR_TO_STR(a) #define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b) #define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c) @@ -370,13 +318,13 @@ struct test_case { return 1e-4; } - virtual float grad_eps(){ + virtual float grad_eps() { return 1e-1f; } // If false, estimate gradient with 2 points, neglects 3rd order derivative and higher. // If true, estimate gradient with 4 points, neglects 5th order derivative and higher. - virtual bool grad_precise(){ + virtual bool grad_precise() { return false; } @@ -409,6 +357,11 @@ struct test_case { return size; } + virtual uint64_t op_flops(ggml_tensor * t) { + GGML_UNUSED(t); + return 0; + } + ggml_cgraph * gf = nullptr; ggml_cgraph * gb = nullptr; @@ -651,12 +604,11 @@ struct test_case { } // align while also leaving some margin for variations in parameters - int align = 20; + int align = 8; int last = (len + align - 1) / align * align; if (last - len < 5) { last += align; } - last = std::max(last, 60); printf("%*s", last - len, ""); // allocate @@ -677,9 +629,25 @@ struct test_case { // warmup run ggml_backend_graph_compute(backend, gf); + // determine number of runs + int n_runs; + if (op_flops(out) > 0) { + // based on flops + const uint64_t GFLOP = 1000 * 1000 * 1000; + const uint64_t target_flops_cpu = 8ULL * GFLOP; + const uint64_t target_flops_gpu = 64ULL * GFLOP; + uint64_t target_flops = ggml_backend_is_cpu(backend) ? target_flops_cpu : target_flops_gpu; + n_runs = std::min(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_flops / op_flops(out)) + 1; + } else { + // based on memory size + const size_t GB = 1ULL << 30; + const size_t target_size_cpu = 8 * GB; + const size_t target_size_gpu = 32 * GB; + size_t target_size = ggml_backend_is_cpu(backend) ? target_size_cpu : target_size_gpu; + n_runs = std::min(ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1; + } + // duplicate the op - size_t target_size = ggml_backend_is_cpu(backend) ? 1ULL << 33 : 1ULL << 35; // 8 GB CPU, 32 GB GPU - int n_runs = std::min((size_t) ggml_graph_size(gf) - ggml_graph_n_nodes(gf), target_size / op_size(out)) + 1; for (int i = 1; i < n_runs; i++) { ggml_graph_add_node(gf, out); } @@ -712,11 +680,35 @@ struct test_case { int64_t end_time = ggml_time_us(); double time_us = end_time - start_time; - printf(" %5d runs - %8.2f us/run - %8zu kB/run - \033[1;34m%7.2f GB/s\033[0m\n", + printf(" %5d runs - %8.2f us/run - ", n_runs, - time_us / n_runs, - op_size(out) / 1024, - mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0); + time_us / n_runs); + + if (op_flops(out) > 0) { + double flops_per_sec = (op_flops(out) * n_runs) / (time_us / 1e6); + auto format_flops = [](double flops) -> std::string { + char buf[256]; + if (flops >= 1e12) { + snprintf(buf, sizeof(buf), "%6.2f TFLOP", flops / 1e12); + } else if (flops >= 1e9) { + snprintf(buf, sizeof(buf), "%6.2f GFLOP", flops / 1e9); + } else if (flops >= 1e6) { + snprintf(buf, sizeof(buf), "%6.2f MFLOP", flops / 1e6); + } else { + snprintf(buf, sizeof(buf), "%6.2f KFLOP", flops / 1e3); + } + return buf; + }; + printf("%s/run - \033[1;34m%sS\033[0m", + format_flops(op_flops(out)).c_str(), + format_flops(flops_per_sec).c_str()); + + } else { + printf("%8zu kB/run - \033[1;34m%7.2f GB/s\033[0m", + op_size(out) / 1024, + mem / (time_us/1e6) / 1024.0 / 1024.0 / 1024.0); + } + printf("\n"); ggml_backend_buffer_free(buf); @@ -1591,13 +1583,9 @@ struct test_mul_mat : public test_case { return 5e-4; } - size_t op_size(ggml_tensor * t) override { - size_t a = ggml_nbytes(t->src[0]) * n * nr[0] * nr[1]; - size_t b = ggml_nbytes(t->src[1]) * m; - size_t c = ggml_nbytes(t); - return a + b + c; - + uint64_t op_flops(ggml_tensor * t) override { GGML_UNUSED(t); + return 2 * m * n * k * bs[0] * nr[0] * bs[1] * nr[1]; } test_mul_mat(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, @@ -1641,13 +1629,9 @@ struct test_mul_mat_id : public test_case { return 5e-4; } - size_t op_size(ggml_tensor * t) override { - size_t a = ggml_nbytes(t->src[2]) * n; - size_t b = ggml_nbytes(t->src[1]) * m; - size_t c = ggml_nbytes(t); - return a + b + c; - + uint64_t op_flops(ggml_tensor * t) override { GGML_UNUSED(t); + return 2 * m * k * n * n_used; } test_mul_mat_id(ggml_type type_a = GGML_TYPE_F32, ggml_type type_b = GGML_TYPE_F32, @@ -3163,47 +3147,46 @@ struct test_falcon : public test_llm { // ########################################### // ## Section 3: GGML Op Test Instantiation ## // ########################################### +static const ggml_type all_types[] = { + GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, + GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, + GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, + GGML_TYPE_Q8_0, + GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, + GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, + GGML_TYPE_Q6_K, + // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends + GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, + GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, + GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, +}; +static const ggml_type base_types[] = { + GGML_TYPE_F32, GGML_TYPE_F16, + GGML_TYPE_Q4_0, + GGML_TYPE_Q4_K, + GGML_TYPE_IQ2_XXS +}; -static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { +static const ggml_type other_types[] = { + GGML_TYPE_Q4_1, + GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, + GGML_TYPE_Q8_0, + GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, + GGML_TYPE_Q5_K, + GGML_TYPE_Q6_K, + // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends + GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, + GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, + GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, + GGML_TYPE_BF16, +}; + +// Test cases for evaluation: should try to cover edge cases while using small input sizes to keep the runtime low +static std::vector> make_test_cases_eval() { std::vector> test_cases; std::default_random_engine rng(0); - const ggml_type all_types[] = { - GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_BF16, - GGML_TYPE_Q4_0, GGML_TYPE_Q4_1, - GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, - GGML_TYPE_Q8_0, - GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, - GGML_TYPE_Q4_K, GGML_TYPE_Q5_K, - GGML_TYPE_Q6_K, - // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends - GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, - GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, - GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, - }; - - const ggml_type base_types[] = { - GGML_TYPE_F32, GGML_TYPE_F16, - GGML_TYPE_Q4_0, - GGML_TYPE_Q4_K, - GGML_TYPE_IQ2_XXS - }; - - const ggml_type other_types[] = { - GGML_TYPE_Q4_1, - GGML_TYPE_Q5_0, GGML_TYPE_Q5_1, - GGML_TYPE_Q8_0, - GGML_TYPE_Q2_K, GGML_TYPE_Q3_K, - GGML_TYPE_Q5_K, - GGML_TYPE_Q6_K, - // GGML_TYPE_TQ1_0, GGML_TYPE_TQ2_0, // TODO: implement for all backends - GGML_TYPE_IQ2_XS, GGML_TYPE_IQ2_S, - GGML_TYPE_IQ3_XXS, GGML_TYPE_IQ1_S, GGML_TYPE_IQ1_M, - GGML_TYPE_IQ4_NL, GGML_TYPE_IQ3_S, GGML_TYPE_IQ4_XS, - GGML_TYPE_BF16, - }; - // unary ops for (int v : {0, 1}) { for (int op = 0; op < GGML_UNARY_OP_COUNT; op++) { @@ -3392,6 +3375,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 16, 256, {10, 10}, {2, 2})); } } + for (ggml_type type_a : other_types) { + for (ggml_type type_b : {GGML_TYPE_F32}) { + if (ggml_blck_size(type_a) != 256) { + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1})); + } + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); + } + } #else // m = a rows // n = b rows @@ -3411,15 +3402,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op } #endif - for (ggml_type type_a : other_types) { - for (ggml_type type_b : {GGML_TYPE_F32}) { - if (ggml_blck_size(type_a) != 256) { - test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, ggml_blck_size(type_a), {1, 1}, {1, 1})); - } - test_cases.emplace_back(new test_mul_mat(type_a, type_b, 16, 1, 256, {1, 1}, {1, 1})); - } - } - test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 128, { 8, 1}, {1, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 83, 2, 128, { 8, 1}, {4, 1})); test_cases.emplace_back(new test_mul_mat(GGML_TYPE_F16, GGML_TYPE_F32, 64, 2, 64, { 8, 1}, {4, 1})); @@ -3624,20 +3606,28 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op test_cases.emplace_back(new test_falcon(2)); #endif - // run tests - if (mode == MODE_GRAD) { - size_t n_ok = 0; - for (auto & test : test_cases) { - if (test->eval_grad(backend, op_name)) { - n_ok++; + return test_cases; +} + +// Test cases for performance evaluation: should be representative of real-world use cases +static std::vector> make_test_cases_perf() { + std::vector> test_cases; + + for (int bs : {1, 8, 16, 32, 512}) { + for (ggml_type type_a : all_types) { + for (ggml_type type_b : {GGML_TYPE_F16, GGML_TYPE_F32}) { + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 4096, bs, 4096, {1, 1}, {1, 1})); + test_cases.emplace_back(new test_mul_mat(type_a, type_b, 32000, bs, 4096, {1, 1}, {1, 1})); } } - printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); - - return n_ok == test_cases.size(); } + return test_cases; +} + +static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) { if (mode == MODE_TEST) { + auto test_cases = make_test_cases_eval(); ggml_backend_t backend_cpu = ggml_backend_cpu_init(); size_t n_ok = 0; @@ -3653,7 +3643,21 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op return n_ok == test_cases.size(); } + if (mode == MODE_GRAD) { + auto test_cases = make_test_cases_eval(); + size_t n_ok = 0; + for (auto & test : test_cases) { + if (test->eval_grad(backend, op_name)) { + n_ok++; + } + } + printf(" %zu/%zu tests passed\n", n_ok, test_cases.size()); + + return n_ok == test_cases.size(); + } + if (mode == MODE_PERF) { + auto test_cases = make_test_cases_perf(); for (auto & test : test_cases) { test->eval_perf(backend, op_name); } @@ -3667,9 +3671,9 @@ static void usage(char ** argv) { printf("Usage: %s [mode] [-o op] [-b backend]\n", argv[0]); printf(" valid modes:\n"); printf(" - test (default, compare with CPU backend for correctness)\n"); - printf(" - perf (performance evaluation)\n"); printf(" - grad (compare gradients from backpropagation with method of finite differences)\n"); - printf(" op names are as given by ggml_op_desc() (e.g. GGML_ADD)\n"); + printf(" - perf (performance evaluation)\n"); + printf(" op names for -o are as given by ggml_op_desc() (e.g. ADD, MUL_MAT, etc)\n"); } int main(int argc, char ** argv) { @@ -3728,6 +3732,11 @@ int main(int argc, char ** argv) { continue; } + if (ggml_backend_is_cpu(backend)) { + // TODO: better value for n_threads + ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2); + } + printf(" Backend name: %s\n", ggml_backend_name(backend)); bool ok = test_backend(backend, mode, op_name_filter);