forked from DongHande/AutoDebias
-
Notifications
You must be signed in to change notification settings - Fork 0
/
arguments.py
19 lines (18 loc) · 1.36 KB
/
arguments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import argparse
# arguments setting
def parse_args():
parser = argparse.ArgumentParser(description='learning framework for RS')
parser.add_argument('--dataset', type=str, default='yahooR3', help='Choose from {yahooR3, coat, simulation}')
parser.add_argument('--base_model_args', type=dict, default={'emb_dim': 10, 'learning_rate': 0.01, 'imputaion_lambda': 0.01, 'weight_decay': 1},
help='base model arguments.')
parser.add_argument('--weight1_model_args', type=dict, default={'learning_rate': 0.1, 'weight_decay': 0.001},
help='weight model arguments.')
parser.add_argument('--weight2_model_args', type=dict, default={'learning_rate': 1e-3, 'weight_decay': 1e-2},
help='imputation model arguments.')
parser.add_argument('--imputation_model_args', type=dict, default= {'learning_rate': 1e-1, 'weight_decay': 1e-4},
help='imputation model arguments.')
parser.add_argument('--training_args', type=dict, default = {'batch_size': 1024, 'epochs': 500, 'patience': 60, 'block_batch': [20, 500]},
help='training arguments.')
parser.add_argument('--uniform_ratio', type=float, default=0.05, help='the ratio of uniform set in the unbiased dataset.')
parser.add_argument('--seed', type=int, default=0, help='global general random seed.')
return parser.parse_args()