-
Notifications
You must be signed in to change notification settings - Fork 0
/
hsgsom.cabal
40 lines (36 loc) · 1.83 KB
/
hsgsom.cabal
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Name: hsgsom
Version: 0.2.0
Cabal-Version: >= 1.6.0.3
Build-Type: Simple
License: BSD3
License-File: LICENSE
Data-Files: README
Author: Stephan Günther
Maintainer: Stephan Günther <gnn dot github at gmail dot com>
Category: Data Mining, Clustering
Synopsis: An implementation of the GSOM clustering algorithm.
Description:
The growing self organising map (GSOM) algorithm is a clustering algorithm
working on a set of n-dimensional numeric input vectors. It's output is a
network of nodes laid out in two dimensions where each node has a weight
vector associated with it. This weight vector has the same dimension as the
input vectors and is meant to be intepreted as a cluster center, i.e. it
represents those input vectors whose distance to the node's weight vector
is minimal when compared to the distance to the other nodes weight vectors.
See <http://en.wikipedia.org/wiki/GSOM> for an explanation of the algorithm.
The algorithm was introduced in:
Alahakoon, D., Halgamuge, S. K. and Sirinivasan, B. (2000)
Dynamic Self Organizing Maps With Controlled Growth
for Knowledge Discovery,
IEEE Transactions on Neural Networks,
Special Issue on Knowledge Discovery and Data Mining, 11, pp 601-614.
Library
Build-Depends: base >= 3 && < 5, containers, random, time, stm
Exposed-Modules: Data.Datamining.Clustering.Gsom,
Data.Datamining.Clustering.Gsom.Coordinates,
Data.Datamining.Clustering.Gsom.Input,
Data.Datamining.Clustering.Gsom.Lattice,
Data.Datamining.Clustering.Gsom.Node,
Data.Datamining.Clustering.Gsom.Parallel,
Data.Datamining.Clustering.Gsom.Phase
GHC-Options: -O2 -fvia-C -optc-O3