We have only tested the TensorRT backend in docker so, we recommend docker for a smooth TensorRT backend setup.
Note: We use tensorrt_llm==0.15.0.dev2024111200
-
Install docker
-
Install nvidia-container-toolkit
-
Run WhisperLive TensorRT in docker
docker run -p 9090:9090 --runtime=nvidia --gpus all --entrypoint /bin/bash -it ghcr.io/collabora/whisperlive-tensorrt:latest
- We build
small.en
andsmall
multilingual TensorRT engine as examples below. The script logs the path of the directory with Whisper TensorRT engine. We need that model_path to run the server.
# convert small.en
bash build_whisper_tensorrt.sh /app/TensorRT-LLM-examples small.en # float16
bash build_whisper_tensorrt.sh /app/TensorRT-LLM-examples small.en int8 # int8 weight only quantization
bash build_whisper_tensorrt.sh /app/TensorRT-LLM-examples small.en int4 # int4 weight only quantization
# convert small multilingual model
bash build_whisper_tensorrt.sh /app/TensorRT-LLM-examples small
# Run English only model
python3 run_server.py --port 9090 \
--backend tensorrt \
--trt_model_path "/app/TensorRT-LLM-examples/whisper/whisper_small_en_float16"
# Run Multilingual model
python3 run_server.py --port 9090 \
--backend tensorrt \
--trt_model_path "/app/TensorRT-LLM-examples/whisper/whisper_small_float16" \
--trt_multilingual