-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
enformer.py
338 lines (285 loc) · 11.6 KB
/
enformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tensorflow implementation of Enformer model.
"Effective gene expression prediction from sequence by integrating long-range
interactions"
Žiga Avsec1, Vikram Agarwal2,4, Daniel Visentin1,4, Joseph R. Ledsam1,3,
Agnieszka Grabska-Barwinska1, Kyle R. Taylor1, Yannis Assael1, John Jumper1,
Pushmeet Kohli1, David R. Kelley2*
1 DeepMind, London, UK
2 Calico Life Sciences, South San Francisco, CA, USA
3 Google, Tokyo, Japan
4 These authors contributed equally.
* correspondence: avsec@google.com, pushmeet@google.com, drk@calicolabs.com
"""
import inspect
from typing import Any, Callable, Dict, Optional, Text, Union, Iterable
import attention_module
import numpy as np
import sonnet as snt
import tensorflow as tf
SEQUENCE_LENGTH = 196_608
BIN_SIZE = 128
TARGET_LENGTH = 896
class Enformer(snt.Module):
"""Main model."""
def __init__(self,
channels: int = 1536,
num_transformer_layers: int = 11,
num_heads: int = 8,
pooling_type: str = 'attention',
name: str = 'enformer'):
"""Enformer model.
Args:
channels: Number of convolutional filters and the overall 'width' of the
model.
num_transformer_layers: Number of transformer layers.
num_heads: Number of attention heads.
pooling_type: Which pooling function to use. Options: 'attention' or max'.
name: Name of sonnet module.
"""
super().__init__(name=name)
# pylint: disable=g-complex-comprehension,g-long-lambda,cell-var-from-loop
heads_channels = {'human': 5313, 'mouse': 1643}
dropout_rate = 0.4
assert channels % num_heads == 0, ('channels needs to be divisible '
f'by {num_heads}')
whole_attention_kwargs = {
'attention_dropout_rate': 0.05,
'initializer': None,
'key_size': 64,
'num_heads': num_heads,
'num_relative_position_features': channels // num_heads,
'positional_dropout_rate': 0.01,
'relative_position_functions': [
'positional_features_exponential',
'positional_features_central_mask',
'positional_features_gamma'
],
'relative_positions': True,
'scaling': True,
'value_size': channels // num_heads,
'zero_initialize': True
}
trunk_name_scope = tf.name_scope('trunk')
trunk_name_scope.__enter__()
# lambda is used in Sequential to construct the module under tf.name_scope.
def conv_block(filters, width=1, w_init=None, name='conv_block', **kwargs):
return Sequential(lambda: [
snt.distribute.CrossReplicaBatchNorm(
create_scale=True,
create_offset=True,
scale_init=snt.initializers.Ones(),
moving_mean=snt.ExponentialMovingAverage(0.9),
moving_variance=snt.ExponentialMovingAverage(0.9)),
gelu,
snt.Conv1D(filters, width, w_init=w_init, **kwargs)
], name=name)
stem = Sequential(lambda: [
snt.Conv1D(channels // 2, 15),
Residual(conv_block(channels // 2, 1, name='pointwise_conv_block')),
pooling_module(pooling_type, pool_size=2),
], name='stem')
filter_list = exponential_linspace_int(start=channels // 2, end=channels,
num=6, divisible_by=128)
conv_tower = Sequential(lambda: [
Sequential(lambda: [
conv_block(num_filters, 5),
Residual(conv_block(num_filters, 1, name='pointwise_conv_block')),
pooling_module(pooling_type, pool_size=2),
],
name=f'conv_tower_block_{i}')
for i, num_filters in enumerate(filter_list)], name='conv_tower')
# Transformer.
def transformer_mlp():
return Sequential(lambda: [
snt.LayerNorm(axis=-1, create_scale=True, create_offset=True),
snt.Linear(channels * 2),
snt.Dropout(dropout_rate),
tf.nn.relu,
snt.Linear(channels),
snt.Dropout(dropout_rate)], name='mlp')
transformer = Sequential(lambda: [
Sequential(lambda: [
Residual(Sequential(lambda: [
snt.LayerNorm(axis=-1,
create_scale=True, create_offset=True,
scale_init=snt.initializers.Ones()),
attention_module.MultiheadAttention(**whole_attention_kwargs,
name=f'attention_{i}'),
snt.Dropout(dropout_rate)], name='mha')),
Residual(transformer_mlp())], name=f'transformer_block_{i}')
for i in range(num_transformer_layers)], name='transformer')
crop_final = TargetLengthCrop1D(TARGET_LENGTH, name='target_input')
final_pointwise = Sequential(lambda: [
conv_block(channels * 2, 1),
snt.Dropout(dropout_rate / 8),
gelu], name='final_pointwise')
self._trunk = Sequential([stem,
conv_tower,
transformer,
crop_final,
final_pointwise],
name='trunk')
trunk_name_scope.__exit__(None, None, None)
with tf.name_scope('heads'):
self._heads = {
head: Sequential(
lambda: [snt.Linear(num_channels), tf.nn.softplus],
name=f'head_{head}')
for head, num_channels in heads_channels.items()
}
# pylint: enable=g-complex-comprehension,g-long-lambda,cell-var-from-loop
@property
def trunk(self):
return self._trunk
@property
def heads(self):
return self._heads
def __call__(self, inputs: tf.Tensor,
is_training: bool) -> Dict[str, tf.Tensor]:
trunk_embedding = self.trunk(inputs, is_training=is_training)
return {
head: head_module(trunk_embedding, is_training=is_training)
for head, head_module in self.heads.items()
}
@tf.function(input_signature=[
tf.TensorSpec([None, SEQUENCE_LENGTH, 4], tf.float32)])
def predict_on_batch(self, x):
"""Method for SavedModel."""
return self(x, is_training=False)
class TargetLengthCrop1D(snt.Module):
"""Crop sequence to match the desired target length."""
def __init__(self,
target_length: Optional[int],
name: str = 'target_length_crop'):
super().__init__(name=name)
self._target_length = target_length
def __call__(self, inputs):
if self._target_length is None:
return inputs
trim = (inputs.shape[-2] - self._target_length) // 2
if trim < 0:
raise ValueError('inputs longer than target length')
elif trim == 0:
return inputs
else:
return inputs[..., trim:-trim, :]
class Sequential(snt.Module):
"""snt.Sequential automatically passing is_training where it exists."""
def __init__(self,
layers: Optional[Union[Callable[[], Iterable[snt.Module]],
Iterable[Callable[..., Any]]]] = None,
name: Optional[Text] = None):
super().__init__(name=name)
if layers is None:
self._layers = []
else:
# layers wrapped in a lambda function to have a common namespace.
if hasattr(layers, '__call__'):
layers = layers()
self._layers = [layer for layer in layers if layer is not None]
def __call__(self, inputs: tf.Tensor, is_training: bool, **kwargs):
outputs = inputs
for _, mod in enumerate(self._layers):
if accepts_is_training(mod):
outputs = mod(outputs, is_training=is_training, **kwargs)
else:
outputs = mod(outputs, **kwargs)
return outputs
def pooling_module(kind, pool_size):
"""Pooling module wrapper."""
if kind == 'attention':
return SoftmaxPooling1D(pool_size=pool_size, per_channel=True,
w_init_scale=2.0)
elif kind == 'max':
return tf.keras.layers.MaxPool1D(pool_size=pool_size, padding='same')
else:
raise ValueError(f'Invalid pooling kind: {kind}.')
class SoftmaxPooling1D(snt.Module):
"""Pooling operation with optional weights."""
def __init__(self,
pool_size: int = 2,
per_channel: bool = False,
w_init_scale: float = 0.0,
name: str = 'softmax_pooling'):
"""Softmax pooling.
Args:
pool_size: Pooling size, same as in Max/AvgPooling.
per_channel: If True, the logits/softmax weights will be computed for
each channel separately. If False, same weights will be used across all
channels.
w_init_scale: When 0.0 is equivalent to avg pooling, and when
~2.0 and `per_channel=False` it's equivalent to max pooling.
name: Module name.
"""
super().__init__(name=name)
self._pool_size = pool_size
self._per_channel = per_channel
self._w_init_scale = w_init_scale
self._logit_linear = None
@snt.once
def _initialize(self, num_features):
self._logit_linear = snt.Linear(
output_size=num_features if self._per_channel else 1,
with_bias=False, # Softmax is agnostic to shifts.
w_init=snt.initializers.Identity(self._w_init_scale))
def __call__(self, inputs):
_, length, num_features = inputs.shape
self._initialize(num_features)
inputs = tf.reshape(
inputs,
(-1, length // self._pool_size, self._pool_size, num_features))
return tf.reduce_sum(
inputs * tf.nn.softmax(self._logit_linear(inputs), axis=-2),
axis=-2)
class Residual(snt.Module):
"""Residual block."""
def __init__(self, module: snt.Module, name='residual'):
super().__init__(name=name)
self._module = module
def __call__(self, inputs: tf.Tensor, is_training: bool, *args,
**kwargs) -> tf.Tensor:
return inputs + self._module(inputs, is_training, *args, **kwargs)
def gelu(x: tf.Tensor) -> tf.Tensor:
"""Applies the Gaussian error linear unit (GELU) activation function.
Using approximiation in section 2 of the original paper:
https://arxiv.org/abs/1606.08415
Args:
x: Input tensor to apply gelu activation.
Returns:
Tensor with gelu activation applied to it.
"""
return tf.nn.sigmoid(1.702 * x) * x
def one_hot_encode(sequence: str,
alphabet: str = 'ACGT',
neutral_alphabet: str = 'N',
neutral_value: Any = 0,
dtype=np.float32) -> np.ndarray:
"""One-hot encode sequence."""
def to_uint8(string):
return np.frombuffer(string.encode('ascii'), dtype=np.uint8)
hash_table = np.zeros((np.iinfo(np.uint8).max, len(alphabet)), dtype=dtype)
hash_table[to_uint8(alphabet)] = np.eye(len(alphabet), dtype=dtype)
hash_table[to_uint8(neutral_alphabet)] = neutral_value
hash_table = hash_table.astype(dtype)
return hash_table[to_uint8(sequence)]
def exponential_linspace_int(start, end, num, divisible_by=1):
"""Exponentially increasing values of integers."""
def _round(x):
return int(np.round(x / divisible_by) * divisible_by)
base = np.exp(np.log(end / start) / (num - 1))
return [_round(start * base**i) for i in range(num)]
def accepts_is_training(module):
return 'is_training' in list(inspect.signature(module.__call__).parameters)