-
Notifications
You must be signed in to change notification settings - Fork 2.1k
/
multi_dijkstra_test.cc
272 lines (259 loc) · 11.1 KB
/
multi_dijkstra_test.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/graph/multi_dijkstra.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <numeric>
#include <random>
#include <vector>
#include "absl/container/flat_hash_map.h"
#include "absl/container/flat_hash_set.h"
#include "absl/random/distributions.h"
#include "gtest/gtest.h"
#include "ortools/base/gmock.h"
#include "ortools/base/map_util.h"
#include "ortools/base/types.h"
#include "ortools/graph/connected_components.h"
#include "ortools/graph/graph.h"
#include "ortools/graph/random_graph.h"
#include "ortools/graph/util.h"
namespace operations_research {
namespace {
using ::testing::ElementsAre;
using ::testing::IsEmpty;
using ::testing::Pair;
using ::testing::UnorderedElementsAre;
TEST(MultiDijkstraTest, SmallTest) {
// On the following graph (with lengths divided by 10, to test non-integer).
//
// .--------------[6]---------------.
// | v
// 0 --[3]--> 1 --[0]--> 2 --[2]--> 4
// ^ |
// | |
// [0] [0]
// | |
// '--- 3 <---'
//
util::Graph graph;
std::vector<double> arc_lengths;
graph.AddArc(0, 1);
arc_lengths.push_back(0.3);
graph.AddArc(0, 4);
arc_lengths.push_back(0.6);
graph.AddArc(1, 2);
arc_lengths.push_back(0.0);
graph.AddArc(2, 4);
arc_lengths.push_back(0.2);
graph.AddArc(2, 3);
arc_lengths.push_back(0.0);
graph.AddArc(3, 1);
arc_lengths.push_back(0.0);
EXPECT_THAT(
MultiDijkstra<double>(
graph, [&arc_lengths](int arc) { return arc_lengths[arc]; },
{{0}, {1, 2}, {3, 4}, {4}, {}},
[](int, int, double) -> bool { return false; }),
ElementsAre(
UnorderedElementsAre(Pair(0, DistanceAndParentArc<double>{0, -1}),
Pair(1, DistanceAndParentArc<double>{.3, 0}),
Pair(2, DistanceAndParentArc<double>{.3, 2}),
Pair(3, DistanceAndParentArc<double>{.3, 4}),
Pair(4, DistanceAndParentArc<double>{.5, 3})),
UnorderedElementsAre(Pair(1, DistanceAndParentArc<double>{0, -1}),
Pair(2, DistanceAndParentArc<double>{0, -1}),
Pair(3, DistanceAndParentArc<double>{0, 4}),
Pair(4, DistanceAndParentArc<double>{.2, 3})),
UnorderedElementsAre(Pair(3, DistanceAndParentArc<double>{0, -1}),
Pair(1, DistanceAndParentArc<double>{0, 5}),
Pair(2, DistanceAndParentArc<double>{0, 2}),
Pair(4, DistanceAndParentArc<double>{0, -1})),
UnorderedElementsAre(Pair(4, DistanceAndParentArc<double>{0, -1})),
IsEmpty()));
}
TEST(MultiDijkstraTest, RandomizedStressTest) {
// Verify on random graphs that a few invariants are respected.
// Non-exhaustive list:
// - the output looks good: all nodes and arcs are valid integers, etc.
// Also, the parent arcs and their length is consistent with the
// node distances.
// - the arc_length_functor is called at most once on each arc for each
// source, and was called for all of the returned "parent arcs".
// - the settled_node_callback is called at most once on each (node, source)
// pair, and with a distance corresponding to the node's distance in the
// returned search tree from that source.
// - the settled node callback may not be called on a source that has stopped
// its search.
// - when a dijkstra search hasn't been stopped, verify that the set of
// reached nodes corresponds to that source's connected component.
auto random = std::mt19937(1234);
const int num_trials = DEBUG_MODE ? 1000 : 10000;
const int max_num_nodes = 100;
const int max_num_arcs = 200;
const std::vector<int> kNumSources = {0, 1, 3, -1};
for (int trial = 0; trial < num_trials; ++trial) {
// Set up the input graph.
const int num_nodes = absl::Uniform(random, 0, max_num_nodes);
const int num_arcs =
num_nodes == 0 ? 0 : absl::Uniform(random, 0, max_num_arcs);
std::unique_ptr<util::StaticGraph<>> graph = util::GenerateRandomMultiGraph(
num_nodes, num_arcs, /*finalized=*/true, random);
// Set up the input source sets.
int num_sources =
kNumSources[absl::Uniform<int>(random, 0, kNumSources.size())];
if (num_sources < 0) {
num_sources = absl::Uniform(random, 1, num_nodes + 1);
}
std::vector<std::vector<int>> source_sets(num_sources);
// Each source set gets 0 to 3 random nodes, not necessarily distinct.
// Then, with 50% probability, we'll pick two random source sets and append
// either Uniform(num_nodes) random nodes to them (not necessarily distinct)
// or all nodes (distinct).
for (std::vector<int>& source_set : source_sets) {
const int size = num_nodes == 0 ? 0 : absl::Uniform(random, 0, 4);
while (source_set.size() < size) {
source_set.push_back(absl::Uniform(random, 0, num_nodes));
}
}
if (num_sources > 0 && absl::Bernoulli(random, 0.5)) {
for (int i = 0; i < 2; ++i) {
const int source = absl::Uniform(random, 0, num_sources);
if (absl::Bernoulli(random, 0.5)) {
// Append Uniform(num_nodes) random nodes, with repetitions.
const int num = absl::Uniform(random, 0, num_nodes);
for (int j = 0; j < num; ++j) {
source_sets[source].push_back(absl::Uniform(random, 0, num_nodes));
}
} else {
// Append all nodes (shuffled).
std::vector<int> shuffled_nodes(num_nodes, 0);
std::iota(shuffled_nodes.begin(), shuffled_nodes.end(), 0);
std::shuffle(shuffled_nodes.begin(), shuffled_nodes.end(), random);
source_sets[source].insert(source_sets[source].end(),
shuffled_nodes.begin(),
shuffled_nodes.end());
}
}
}
// Set up the (tracked) arc length functor and settled node callbacks.
std::vector<bool> search_was_stopped(num_sources, false);
std::vector<double> search_stop_probability(num_sources, 0.0);
for (double& stop_proba : search_stop_probability) {
if (absl::Bernoulli(random, 0.5)) {
stop_proba = 1.0 / absl::Uniform<int>(random, 1, num_nodes + 1);
}
}
absl::flat_hash_map<int, int> num_arc_length_functor_calls;
absl::flat_hash_map<int, int64_t> arc_length;
std::vector<absl::flat_hash_map<int, int64_t>> settled_node_distance(
num_sources);
auto arc_length_functor = [&](int arc) -> int64_t {
CHECK_GE(arc, 0);
CHECK_LT(arc, graph->num_arcs());
++num_arc_length_functor_calls[arc];
return gtl::LookupOrInsert(&arc_length, arc,
absl::Uniform<int64_t>(random, 0, 1e12));
};
auto settled_node_callback = [&](int node, int source_index,
int64_t distance) -> bool {
CHECK(!search_was_stopped[source_index]);
CHECK_GE(node, 0);
CHECK_LT(node, num_nodes);
CHECK_GE(source_index, 0);
CHECK_LT(source_index, num_sources);
CHECK(settled_node_distance[source_index].insert({node, distance}).second)
<< "In search #" << source_index << ", node #" << node
<< " was settled twice!";
const bool stop =
absl::Bernoulli(random, search_stop_probability[source_index]);
if (stop) {
search_was_stopped[source_index] = true;
}
return stop;
};
// Run the Dijkstra!
const std::vector<absl::flat_hash_map<int, DistanceAndParentArc<int64_t>>>
reached = MultiDijkstra<int64_t>(*graph, arc_length_functor,
source_sets, settled_node_callback);
// Verify the output.
ASSERT_EQ(reached.size(), num_sources);
for (int source_index = 0; source_index < num_sources; ++source_index) {
// Verify that "reached[source_index]" forms a shortest path tree.
for (const auto& p : reached[source_index]) {
const int node = p.first;
const int parent_arc = p.second.parent_arc;
const int64_t distance = p.second.distance;
ASSERT_GE(node, 0);
ASSERT_LT(node, num_nodes);
if (parent_arc == -1) {
ASSERT_EQ(distance, 0);
} else {
ASSERT_GE(parent_arc, 0);
ASSERT_LT(parent_arc, graph->num_arcs());
ASSERT_TRUE(arc_length.contains(parent_arc));
const int parent_node = graph->Tail(parent_arc);
ASSERT_TRUE(reached[source_index].contains(parent_node));
ASSERT_EQ(gtl::FindOrDie(reached[source_index], parent_node).distance,
distance - gtl::FindOrDie(arc_length, parent_arc));
}
}
for (const auto& p : settled_node_distance[source_index]) {
ASSERT_TRUE(reached[source_index].contains(p.first));
ASSERT_EQ(gtl::FindOrDie(reached[source_index], p.first).distance,
p.second);
}
if (!search_was_stopped[source_index]) {
if (source_sets[source_index].empty()) {
ASSERT_EQ(reached[source_index].size(), 0);
} else {
// All sources have been settled with distance 0.
for (const int source : source_sets[source_index]) {
ASSERT_TRUE(settled_node_distance[source_index].contains(source));
ASSERT_EQ(
gtl::FindOrDie(settled_node_distance[source_index], source), 0);
}
// All reached nodes have been settled.
ASSERT_EQ(reached[source_index].size(),
settled_node_distance[source_index].size());
// Run a BFS from the source set and verify that we reach the same
// number of nodes.
std::vector<int> bfs_queue;
std::vector<bool> touched(num_nodes, false);
for (const int src : source_sets[source_index]) {
if (!touched[src]) {
touched[src] = true;
bfs_queue.push_back(src);
}
}
int num_visited = 0;
while (num_visited < bfs_queue.size()) {
const int node = bfs_queue[num_visited++];
for (const int neigh : (*graph)[node]) {
if (!touched[neigh]) {
touched[neigh] = true;
bfs_queue.push_back(neigh);
}
}
}
ASSERT_EQ(reached[source_index].size(), bfs_queue.size());
}
}
}
for (const auto& p : num_arc_length_functor_calls) {
ASSERT_LE(p.second, num_sources);
}
}
}
} // namespace
} // namespace operations_research