-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_reddit.py
138 lines (95 loc) · 3.97 KB
/
data_reddit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright 2021 Grabtaxi Holdings Pte Ltd (GRAB), All rights reserved.
# Use of this source code is governed by an MIT-style license that can be found in the LICENSE file
import torch
from torch_sparse.tensor import SparseTensor
import numpy as np
from anomaly_insert import inject_random_block_anomaly
from models.data import BipartiteData
import torch
from sklearn import preprocessing
import pandas as pd
# %%
def standardize(features: np.ndarray) -> np.ndarray:
scaler = preprocessing.StandardScaler()
z = scaler.fit_transform(features)
return z
def prepare_data():
cols = ["user_id", "item_id", "timestamp", "state_label"] + [
f"v{i+1}" for i in range(172)
]
df = pd.read_csv(f"data/wikipedia.csv", skiprows=1, names=cols)
# edge
cols_d = {"item_id": [("n_action", "count")]}
for i in range(172):
cols_d[f"v{i+1}"] = [(f"v{i+1}_mean", "mean"), (f"v{i+1}_max", "max")]
df_edge = df.groupby(["user_id", "item_id"]).agg(cols_d)
df_edge = df_edge.droplevel(axis=1, level=0).reset_index()
df_edge.to_csv(f"data/reddit-edge.csv")
# user
cols_d = {"item_id": [("n_item", "nunique"), ("n_action", "count")]}
for i in range(172):
cols_d[f"v{i+1}"] = [(f"v{i+1}_mean", "mean")]
df_user = df.groupby(["user_id"]).agg(cols_d)
df_user = df_user.droplevel(axis=1, level=0).reset_index()
df_user.to_csv(f"data/reddit-user.csv")
# item
cols_d = {"user_id": [("n_user", "nunique"), ("n_action", "count")]}
for i in range(172):
cols_d[f"v{i+1}"] = [(f"v{i+1}_mean", "mean")]
df_item = df.groupby(["item_id"]).agg(cols_d)
df_item = df_item.droplevel(axis=1, level=0).reset_index()
df_item.to_csv(f"data/reddit-item.csv")
def create_graph():
df_user = pd.read_csv("data/reddit-user.csv")
df_item = pd.read_csv("data/reddit-item.csv")
df_edge = pd.read_csv("data/reddit-edge.csv")
df_user["uid"] = df_user.index
df_item["iid"] = df_item.index
df_user_id = df_user[["user_id", "uid"]]
df_item_id = df_item[["item_id", "iid"]]
df_edge_2 = df_edge.merge(
df_user_id,
on="user_id",
).merge(df_item_id, on="item_id")
df_edge_2 = df_edge_2.sort_values(["uid", "iid"])
uid = torch.tensor(df_edge_2["uid"].to_numpy())
iid = torch.tensor(df_edge_2["iid"].to_numpy())
adj = SparseTensor(row=uid, col=iid)
edge_attr = torch.tensor(standardize(df_edge_2.iloc[:, 3:-2].to_numpy())).float()
user_attr = torch.tensor(standardize(df_user.iloc[:, 2:-1].to_numpy())).float()
product_attr = torch.tensor(standardize(df_item.iloc[:, 2:-1].to_numpy())).float()
data = BipartiteData(adj, xu=user_attr, xv=product_attr, xe=edge_attr)
return data
def store_graph(name: str, dataset):
torch.save(dataset, f"storage/{name}.pt")
def load_graph(name: str, key: str, id=None):
if id == None:
data = torch.load(f"storage/{name}.pt")
return data[key]
else:
data = torch.load(f"storage/{name}.pt")
return data[key][id]
def synth_random():
# generate nd store data
import argparse
parser = argparse.ArgumentParser(description="GraphBEAN")
parser.add_argument("--name", type=str, default="reddit_anomaly", help="name")
parser.add_argument("--n-graph", type=int, default=10, help="n graph")
args = vars(parser.parse_args())
prepare_data()
graph = create_graph()
store_graph("reddit-graph", graph)
# graph = torch.load(f'storage/reddit-graph.pt')
graph_anomaly_list = []
for i in range(args["n_graph"]):
print(f"GRAPH ANOMALY {i} >>>>>>>>>>>>>>")
print(graph)
graph_multi_dense = inject_random_block_anomaly(
graph, num_group=30, num_nodes_range=(1, 30), num_nodes_range2=(1, 6)
)
graph_anomaly_list.append(graph_multi_dense)
print()
dataset = {"args": args, "graph": graph, "graph_anomaly_list": graph_anomaly_list}
store_graph(args["name"], dataset)
if __name__ == "__main__":
synth_random()