-
Notifications
You must be signed in to change notification settings - Fork 25
/
old_model.py
257 lines (204 loc) · 7.13 KB
/
old_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import cv2
import numpy as np
import pickle
from pandas import DataFrame
import pandas as pd
from keras.models import Sequential
from keras.layers import Activation, Dense, Conv2D, MaxPooling2D, Dropout, Flatten
from keras.models import load_model
from keras import losses
from gtts import gTTS
import os
# CHANGE THE FILE NAME TO DIFFERENT HAAR CASCADES TO FIND THE BEST ONE
haar_cascade = 'hand_detection_cascade.xml'
image_no = 0
def speak(ip_text):
tts = gTTS(text=ip_text, lang='en')
tts.save("pcvoice.mp3")
os.system("mpg321 pcvoice.mp3")
def convert_label(x):
if x == '0':
return 'A'
elif x == '1':
return 'B'
elif x == '2':
return 'C'
elif x == '3':
return 'D'
elif x == '4':
return 'E'
elif x == '5':
return 'F'
elif x == '6':
return 'G'
elif x == '7':
return 'H'
elif x == '8':
return 'I'
elif x == '9':
return 'J'
elif x == '10':
return 'K'
elif x == '11':
return 'L'
elif x == '12':
return 'M'
elif x == '13':
return 'N'
elif x == '14':
return 'O'
elif x == '15':
return 'P'
elif x == '16':
return 'Q'
elif x == '17':
return 'R'
elif x == '18':
return 'S'
elif x == '19':
return 'T'
elif x == '20':
return 'U'
elif x == '21':
return 'V'
elif x == '22':
return 'W'
elif x == '23':
return 'X'
elif x == '24':
return 'Y'
elif x == '25':
return 'Z'
def main():
train_data = pd.read_csv('/media/akash/This is Storage/Sem VI/ML Lab Project/sign_mnist_train.csv', sep=',', header = None, low_memory=False)
#print(train_data.head(n=5))
test_data = pd.read_csv('/media/akash/This is Storage/Sem VI/ML Lab Project/sign_mnist_test.csv', sep=',', header = None, low_memory=False)
train_data = train_data[1:]
test_data = test_data[1:]
observed_train_values = train_data
observed_train_values = observed_train_values.drop(observed_train_values.columns[1:], axis=1)
only_train_pixels = train_data
only_train_pixels = only_train_pixels.drop(only_train_pixels.columns[0], axis=1)
observed_train_values = list(observed_train_values.values.flatten())
only_train_pixels = only_train_pixels.values.tolist()
observed_test_values = test_data
observed_test_values = observed_test_values.drop(observed_test_values.columns[1:], axis=1)
only_test_pixels = test_data
only_test_pixels = only_test_pixels.drop(only_test_pixels.columns[0], axis=1)
observed_test_values = list(observed_test_values.values.flatten())
only_test_pixels = only_test_pixels.values.tolist()
train_data['real_label'] = train_data.apply(lambda row: convert_label(row[0]), axis=1)
test_data['real_label'] = test_data.apply(lambda row: convert_label(row[0]), axis=1)
#print(observed_train_values)
print("L:",len(only_test_pixels),"IL:", len(only_test_pixels[2]), "Vals:", len(observed_test_values), len(observed_test_values[0]) )
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28,1)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(25, activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adadelta', metrics=['accuracy'])
model.compile(loss='categorical_crossentropy',optimizer='adadelta', metrics=['accuracy'])
#print(only_train_pixels)
print("Train shape: ", len(only_train_pixels), "x", len(only_train_pixels[0]))
print("Train labels shape: ", len(observed_train_values), "x", len(observed_train_values[0]))
train_pixels = []
for image in only_train_pixels:
image = np.reshape(image, (28, 28))
train_pixels.append(image)
print("Training Shape: ", train_pixels[0][0].shape[1:])
#model.fit(np.array(only_train_pixels), np.asarray(observed_train_values), epochs=1)
model = load_model('cnn_model.h5', custom_objects={'loss_categorical_crossentropy': losses.categorical_crossentropy})
#print(only_train_pixels[0])
#print(only_train_pixels)
#print(tr_data.head())
'''
print(only_train_pixels.head())
for index, row in only_train_pixels.iterrows():
for value in range(785):
only_train_pixels.at[index, value] = int(only_train_pixels.at[index, value])/255
print("AFTER\n")
print(only_train_pixels.head())
'''
x, y, w, h = 300, 100, 300, 300
# Flags for key presses
captureFlag, saveFlag, escapeFlag = False, False, False
# Use webcam at VideoCapture(0)
live_stream = cv2.VideoCapture(0)
global image_no
# Use webcam at VideoCapture(1) if webcam at VideoCapture(0) isn't working
#live_stream = cv2.VideoCapture(1)
# Loop for real-time video feed
while True:
# Detect keypresses
keypress = cv2.waitKey(1)
# Read individual frames
img = live_stream.read()[1]
# Laterally invert the frame
img = cv2.flip(img, 1)
# Conver to grayscale
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# HSV Filtered Image
hsvCrop = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# Getting and normalizing the Histogram
histogram = cv2.calcHist([hsvCrop], [0, 1], None, [180, 256], [0, 180, 0, 256])
cv2.normalize(histogram, histogram, 0, 255, cv2.NORM_MINMAX)
# What image to scan?
img_to_use = img
# The Haar cascade used to detect a hand in the frame
hand_cascade = cv2.CascadeClassifier(haar_cascade)
hands = hand_cascade.detectMultiScale(img_to_use, 1.3, 5)
for (x,y,w,h) in hands:
cv2.rectangle(img_to_use, (x,y), (x+w,y+h), (0,0,255), 2)
# If 'c' is pressed
if keypress == ord('c'):
captureFlag = True
if captureFlag:
captureFlag = False
resized_image = cv2.resize(gray, (28, 28))
print(model.summary())
print("Resized Image:",type(resized_image), len(resized_image))
print(type(resized_image[0]), len(resized_image[0]))
print(type(resized_image[0][0]))
resized_image = np.reshape(resized_image,[1,28,28,1])
cv2.imwrite( "./saved/image"+str(image_no)+".jpg", resized_image );
prediction = model.predict(resized_image)
for vec in range(25):
if(prediction[0][vec] == 1):
predicted_letter = convert_label(vec)
print(predicted_letter)
#speak(predicted_letter)
#speak('c')
image_no = image_no + 1
'''
# Create a back projection
dst = cv2.calcBackProject([hsvCrop], [0, 1], histogram, [0, 180, 0, 256], 1)
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(10,10))
cv2.filter2D(dst,-1,disc,dst)
# Apply blur functions
blur = cv2.GaussianBlur(dst, (11,11), 0)
blur = cv2.medianBlur(blur, 15)
# Get threshold values
ret,thresh = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Merge if value is above threshold
thresh = cv2.merge((thresh,thresh,thresh))
res = cv2.bitwise_and(img,thresh)
# Display the Thresholded image
cv2.imshow("Threshold", thresh)
'''
# If ESC is pressed
if keypress == 27:
exit(0)
cv2.imshow("Hand Histogram", img_to_use)
# Stop using camers
live_stream.release()
# Destroy windows created by OpenCV
cv2.destroyAllWindows()
# Save the histogram as a pickle
with open("hist", "wb") as f:
pickle.dump(histogram, f)
if (__name__ == "__main__"):
main()