Skip to content

Latest commit

 

History

History
157 lines (126 loc) · 5.65 KB

README.md

File metadata and controls

157 lines (126 loc) · 5.65 KB

RelViT

arXiv arXiv arXiv

If you use the code of this repo and you find this project useful, 
please consider to give a star ⭐!

This repository hosts the official code related to the paper "Where are my Neighbors? Exploiting Patches Relations in Self-Supervised Vision Transformer", Guglielmo Camporese, Elena Izzo, Lamberto Ballan - BMVC 2022. [arXiv] [video]

relvit

BibTex Citation

@inproceedings{Camporese2022WhereAM,
  title     = {Where are my Neighbors? Exploiting Patches Relations in Self-Supervised Vision Transformer},
  author    = {Guglielmo Camporese, Elena Izzo, Lamberto Ballan},
  booktitle = {British Machine Vision Conference (BMVC)},
  year      = {2022}
}

Updates

  • [22/10/13] Our paper has been accepted to BMVC 2022 (oral spotlight)!
  • [22/06/02] Our paper is on arXiv! Here you can find the link.
  • [22/05/24] Our paper has been selected for a spotlight oral presentation at the CVPR 2022 "T4V: Transformers for Vision" workshop!
  • [22/05/23] Our paper just got accepted at the CVPR 2022 "T4V: Transformers for Vision" workshop!

Install

Install
# clone the repo
git clone https://github.com/guglielmocamporese/relvit.git

# install and activate the conda env
cd relvit
conda env create -f env.yml
conda activate relvit

Training

All the commands are based on the training scripts in the scripts folder.

Self-Supervised Pre-Training + Supervised Finetuning

Self-Supervised Pre-Training + Supervised Finetuning

Here you can find the commands for:

  1. Running the self-supervised learning pre-training
# SSL upstream pre-training
bash scripts/upstream.sh \
    --exp_id upstream_cifar10 --backbone vit \
    --model_size small --num_gpus 1 --epochs 100 --dataset cifar10  \
    --weight_decay 0.1 --drop_path_rate 0.1 --dropout 0.0
  1. Running the supervised finetuning using the checkpoint obtained in the previous step.

After running the upstream pre-training, the directory tmp/relvit will contain the file checkpoint checkpoints/best.ckpt file that has to be passed to the finetuning script in the --model_checkpoint argument.

# supervised downstream
bash scripts/downstream.sh \
    --exp_id downstream_cifar10 --backbone vit --num_gpus 1 \
    --epochs 100 --dataset cifar10  --weight_decay 0.1 --drop_path_rate 0.1 \
    --model_size small --dropout 0.0 --model_checkpoint checkpoint_path
Downstream-Only Experiment

Downstream-Only Experiment

Here you can find the commands for training the ViT, Swin, and T2T models for the downstram-only supervised task.

# ViT downstream-only
bash scripts/downstream-only.sh \
    --seed 2022 --exp_id downstream-only_vit_cifar10 \
    --backbone vit --dataset cifar10 --weight_decay 0.1 --drop_path_rate 0.1 \
    --model_size small --dropout 0.0 --patch_trans colJitter:0.8-grayScale:0.2

# Swin downstream-only
bash scripts/downstream-only.sh \
    --seed 2022 --exp_id downstream-only_swin_cifar10 \
    --backbone swin  --dataset cifar10_224 --batch_size 64 --weight_decay 0.1 \
    --drop_path_rate 0.1 --model_size tiny --dropout 0.0 \
    --patch_trans colJitter:0.8-grayScale:0.2 

# T2T downstream-only
bash scripts/downstream-only.sh \
    --seed 2022--exp_id downstream-only_t2t_cifar10 \
    --backbone t2t_vit --dataset cifar10_224 --batch_size 64 --weight_decay 0.1 \
    --drop_path_rate 0.1 --model_size 14 --dropout 0.0
Mega-Patches Ablation

Mega-Patches Ablation

Here you can find the experiments with the use of the mega-patches described in the paper. Also in this case, you can find the commands for the SSL upstream with the mega-patches and the subsequent supervised finetuning.

# SSL upstream pre-training with 6x6 megapatches 
bash scripts/upstream_MEGApatch.sh \
    --exp_id upstream_megapatch_imagenet100 \
    --backbone vit --model_size small --dataset imagenet100 \
    --batch_size 256 --weight_decay 0.1 --drop_path_rate 0.1 \
    --dropout 0.0 --side_megapatches 6

After running the upstream pre-training, the directory tmp/relvit will contain the file checkpoint checkpoints/best.ckpt file that has to be passed to the finetuning script in the --model_checkpoint argument.

# downstream finetuning
bash scripts/downstream.sh \
    --exp_id downstream_imagenet100 --backbone vit \
    --dataset imagenet100 --weight_decay 0.1 --drop_path_rate 0.1 \
    --model_size small --dropout 0.0 --model_checkpoint checkpoint_path
Supported Datasets

Supported Datasets

Here you can find the list of all the supported datasets in the repo that can be specified using the --datasets input argument in the previous commands.

Datasets

  • CIFAR10
  • CIFAR100
  • Flower102
  • SVHN
  • Tiny ImageNet
  • ImageNet100

Validate

Validation Scripts
# validation on the upstream task
bash scripts/upstream.sh --dataset cifar10 --mode validation

# validation on the downstream task
bash scripts/downstream.sh --dataset cifar10 --mode validation