-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
146 lines (118 loc) · 5.21 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from generation.generator import Generator, BatchGenerator
from generation.structures.tree import BinaryTree, BinarySearchTree
from generation.structures.graph import UndirectedGraph, DirectedGraph
from evaluation.evaluator import Evaluator
from evaluation.models.openai import OpenAI
from evaluation.models.deepmind import DeepMind
from evaluation.models.anthropic import Anthropic
from utils.logger import Logger
logger = Logger(__name__)
from evaluation.prompts import REPHRASE, NO_STRUCTURE, STEPS, DEFINITION, EXPERT, ZERO_SHOT_COT_REREAD, SERIAL, POLITE, ZERO_SHOT_COT, GOLD_COT, GENERAL_KNOWLEDGE, ROLEPLAY_EXPERT_COT, DELIMIT, GOLD_COT_EXPERT_DELIMIT, ZERO_SHOT_COT_POLITE, ZERO_SHOT_ROOT_ATTENTION, ZERO_SHOT, ZERO_SHOT_A, ZERO_SHOT_B, ZERO_SHOT_C
import asyncio
import os
from pathlib import Path
from dotenv import load_dotenv
from uuid import uuid4
import cProfile
import pstats
load_dotenv()
### keys ###
openai_api_key = os.environ.get('OPENAI_API_KEY_DEV')
#openai_api_key = os.environ.get('OPENAI_API_KEY_HCI')
deepmind_api_key_a = os.environ.get('DEEPMIND_API_KEY_DEV_A')
deepmind_api_key_b = os.environ.get('DEEPMIND_API_KEY_DEV_B')
deepmind_api_key_c = os.environ.get('DEEPMIND_API_KEY_DEV_C')
deepmind_api_key_d = os.environ.get('DEEPMIND_API_KEY_DEV_D')
anthropic_api_key = os.environ.get('ANTHROPIC_API_KEY_DEV')
### prompts ###
PROMPTS = {'zero_shot': ZERO_SHOT}
### paths ###
image_path_binary_tree = Path('images/binary_tree/')
image_path_binary_search_tree = Path('images/binary_search_tree/')
image_path_undirected_graph = Path('images/undirected_graph/')
image_path_directed_graph = Path('images/directed_graph/')
yaml_path = Path('data/')
### combinations ###
COLORS = ['#ffffff', '#ffff00'] # white, yellow, red, green, blue
SHAPES = ['o', 's', 'd']
FONTS = ['sans-serif', 'serif', 'monospace']
WIDTH = ['1.0', '5.0']
ARROWS = ['->', '-|>']
RESOLUTIONS = [256, 512, 1024, 2048]
STRUCTURES = ['binary_tree', 'binary_search_tree', 'undirected_graph', 'directed_graph']
###### test generation ######
batch_generator = BatchGenerator()
generation = 7
variation = 3
async def run_batch():
await batch_generator.generate_batch(
structure_class=BinaryTree,
type='bit',
yaml_name='binary_tree.yaml',
yaml_path=yaml_path,
save_path=image_path_binary_tree,
generations=generation,
variations=variation,
colors=COLORS,
width=WIDTH,
)
await batch_generator.generate_batch(
structure_class=BinarySearchTree,
type='bst',
yaml_name='binary_search_tree.yaml',
yaml_path=yaml_path,
save_path=image_path_binary_search_tree,
generations=generation,
variations=variation,
colors=COLORS,
width=WIDTH,
)
await batch_generator.generate_batch(
structure_class=UndirectedGraph,
type='ug',
yaml_name='undirected_graph.yaml',
yaml_path=yaml_path,
save_path=image_path_undirected_graph,
generations=generation,
variations=variation,
colors=COLORS,
width=WIDTH,
)
await batch_generator.generate_batch(
structure_class=DirectedGraph,
type='dg',
yaml_name='directed_graph.yaml',
yaml_path=yaml_path,
save_path=image_path_directed_graph,
generations=generation,
variations=variation,
colors=COLORS,
width=WIDTH,
)
###### test evaluation ######
openai = OpenAI(api_key=openai_api_key, model='gpt-4o')
deepmind_a = DeepMind(api_key=deepmind_api_key_a, calls_per_second=15/60, model='gemini-1.5-pro')
deepmind_b = DeepMind(api_key=deepmind_api_key_b, calls_per_second=15/60, model='gemini-1.5-pro')
deepmind_c = DeepMind(api_key=deepmind_api_key_c, calls_per_second=15/60, model='gemini-1.5-pro')
deepmind_d = DeepMind(api_key=deepmind_api_key_d, calls_per_second=15/60, model='gemini-1.5-pro')
anthropic = Anthropic(api_key=anthropic_api_key, model='claude-3-haiku-20240307')
evaluator = Evaluator()
async def evaluate_model(evaluator, eval_name, model, csv_name, prompts=PROMPTS, structures=STRUCTURES):
for prompt_name, prompts_group in prompts.items():
for structure in structures:
try:
await evaluator.evaluate(model=model,prompts=prompts_group, yaml_path=yaml_path, yaml_name=f'{structure}.yaml', csv_path=Path('results/'), csv_name=f'{csv_name}-{prompt_name}-{eval_name}.csv', repeats=3, limit=1)
except Exception as e:
logger.error(f'{e}')
return
async def run_evaluations():
# Create a list of coroutines for the evaluations you want to run
tasks = [
evaluate_model(evaluator=Evaluator(), eval_name='large_macro', model=deepmind_a, csv_name='deepmind-gemini-1.5-pro-a', structures=['binary_search_tree']),
evaluate_model(evaluator=Evaluator(), eval_name='large_macro', model=deepmind_b, csv_name='deepmind-gemini-1.5-pro-b', structures=['undirected_graph']),
evaluate_model(evaluator=Evaluator(), eval_name='large_macro', model=deepmind_d, csv_name='deepmind-gemini-1.5-pro-d', structures=['directed_graph']),
]
# Run the tasks concurrently
await asyncio.gather(*tasks)
# Run the run_evaluations coroutine
#asyncio.run(run_evaluations())