-
Notifications
You must be signed in to change notification settings - Fork 93
/
scorer_template.py
113 lines (89 loc) · 4.32 KB
/
scorer_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
"""Template base class for a custom scorer recipe."""
import numpy as np
import datatable as dt
import typing
_global_modules_needed_by_name = [] # Optional global package requirements, for multiple custom recipes in a file
class CustomScorer(BaseScorer):
_maximize = True # whether a higher score is better
_perfect_score = 1.0 # the ideal score, used for early stopping once validation score achieves this value
_supports_sample_weight = True # whether the scorer accepts and uses the sample_weight input
_max_num_rows = None # limit number of rows via automatic sampling (only if slow)
"""Please enable the problem types this scorer applies to"""
_unsupervised = False # ignores actual, uses predicted and X to compute metrics
_regression = False
_binary = False
_multiclass = False
"""
Whether the dataset itself is required to score (in addition to actual and predicted columns).
If set to True, X will be passed as a datatable Frame, and can be converted to pandas via X.to_pandas() if needed.
"""
_needs_X = False
"""Specify the python package dependencies (will be installed via pip install mypackage==1.3.37)"""
_modules_needed_by_name = [] # List[str]
@staticmethod
def is_enabled():
"""Toggle to enable/disable recipe. If disabled, recipe will be completely ignored."""
return True
@staticmethod
def do_acceptance_test():
"""
Whether to enable acceptance tests during upload of recipe and during start of Driverless AI.
Acceptance tests perform a number of sanity checks on small data, and attempt to provide helpful instructions
for how to fix any potential issues. Disable if your recipe requires specific data or won't work on random data.
"""
return True
@staticmethod
def acceptance_test_timeout():
"""
Timeout in minutes for each test of a custom recipe.
"""
return config.acceptance_test_timeout
def score(
self,
actual: np.array,
predicted: np.array,
sample_weight: typing.Optional[np.array] = None,
labels: typing.Optional[List[any]] = None,
X: typing.Optional[dt.Frame] = None,
**kwargs) -> float:
"""Please implement this function to compute a score from actual and predicted values.
Args:
actual (:obj:`np.array`): actual values from target column
(1 column, 1 numeric or string value per row)
predicted (:obj:`np.array`): predicted numeric values
(1 column for regression and binary classification, p columns for p-class problem)
sample_weight (:obj:`np.array`): Optional, observation weights for each sample
(1 column, 1 numeric value per row)
labels (:obj:`List[any]`): Optional, class labels (or `None` for regression)
X (:obj:`dt.Frame`): Optional, datatable Frame containing dataset
Returns:
float: score
"""
raise NotImplementedError
class CustomUnsupervisedScorer(UnsupervisedScorer, CustomScorer):
_perfect_score = 0.0 # Please modify accordingly
_max_num_rows = None # limit number of rows via automatic sampling (only if slow)
@staticmethod
def do_acceptance_test():
return False # don't know what to test, since can be arbitrary
def score(
self,
actual: np.array,
predicted: np.array,
sample_weight: typing.Optional[np.array] = None,
labels: typing.Optional[List[any]] = None,
X: typing.Optional[dt.Frame] = None,
**kwargs) -> float:
"""Please implement this function to compute a score from X and predicted values.
Args:
actual (:obj:`np.array`): ignored
predicted (:obj:`np.array`): predicted values (output of unsupervised transformer)
(any number of columns, any types)
sample_weight (:obj:`np.array`): Optional, observation weights for each sample
(1 column, 1 numeric value per row)
labels (:obj:`List[any]`): ignored
X (:obj:`dt.Frame`): Always provided, datatable Frame containing dataset (original data)
Returns:
float: score
"""
raise NotImplementedError