-
Notifications
You must be signed in to change notification settings - Fork 107
/
seathru.py
588 lines (541 loc) · 23.9 KB
/
seathru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import collections
import sys
import argparse
import numpy as np
import sklearn as sk
import scipy as sp
import scipy.optimize
import scipy.stats
import math
from PIL import Image
import rawpy
import matplotlib
from matplotlib import pyplot as plt
from skimage import exposure
from skimage.restoration import denoise_bilateral, denoise_tv_chambolle, estimate_sigma
from skimage.morphology import closing, opening, erosion, dilation, disk, diamond, square
matplotlib.use('TkAgg')
'''
Finds points for which to estimate backscatter
by partitioning the image into different depth
ranges and taking the darkest RGB triplets
from that set as estimations of the backscatter
'''
def find_backscatter_estimation_points(img, depths, num_bins=10, fraction=0.01, max_vals=20, min_depth_percent=0.0):
z_max, z_min = np.max(depths), np.min(depths)
min_depth = z_min + (min_depth_percent * (z_max - z_min))
z_ranges = np.linspace(z_min, z_max, num_bins + 1)
img_norms = np.mean(img, axis=2)
points_r = []
points_g = []
points_b = []
for i in range(len(z_ranges) - 1):
a, b = z_ranges[i], z_ranges[i+1]
locs = np.where(np.logical_and(depths > min_depth, np.logical_and(depths >= a, depths <= b)))
norms_in_range, px_in_range, depths_in_range = img_norms[locs], img[locs], depths[locs]
arr = sorted(zip(norms_in_range, px_in_range, depths_in_range), key=lambda x: x[0])
points = arr[:min(math.ceil(fraction * len(arr)), max_vals)]
points_r.extend([(z, p[0]) for n, p, z in points])
points_g.extend([(z, p[1]) for n, p, z in points])
points_b.extend([(z, p[2]) for n, p, z in points])
return np.array(points_r), np.array(points_g), np.array(points_b)
'''
Estimates coefficients for the backscatter curve
based on the backscatter point values and their depths
'''
def find_backscatter_values(B_pts, depths, restarts=10, max_mean_loss_fraction=0.1):
B_vals, B_depths = B_pts[:, 1], B_pts[:, 0]
z_max, z_min = np.max(depths), np.min(depths)
max_mean_loss = max_mean_loss_fraction * (z_max - z_min)
coefs = None
best_loss = np.inf
def estimate(depths, B_inf, beta_B, J_prime, beta_D_prime):
val = (B_inf * (1 - np.exp(-1 * beta_B * depths))) + (J_prime * np.exp(-1 * beta_D_prime * depths))
return val
def loss(B_inf, beta_B, J_prime, beta_D_prime):
val = np.mean(np.abs(B_vals - estimate(B_depths, B_inf, beta_B, J_prime, beta_D_prime)))
return val
bounds_lower = [0,0,0,0]
bounds_upper = [1,5,1,5]
for _ in range(restarts):
try:
optp, pcov = sp.optimize.curve_fit(
f=estimate,
xdata=B_depths,
ydata=B_vals,
p0=np.random.random(4) * bounds_upper,
bounds=(bounds_lower, bounds_upper),
)
l = loss(*optp)
if l < best_loss:
best_loss = l
coefs = optp
except RuntimeError as re:
print(re, file=sys.stderr)
if best_loss > max_mean_loss:
print('Warning: could not find accurate reconstruction. Switching to linear model.', flush=True)
slope, intercept, r_value, p_value, std_err = sp.stats.linregress(B_depths, B_vals)
BD = (slope * depths) + intercept
return BD, np.array([slope, intercept])
return estimate(depths, *coefs), coefs
'''
Estimate illumination map from local color space averaging
'''
def estimate_illumination(img, B, neighborhood_map, num_neighborhoods, p=0.5, f=2.0, max_iters=100, tol=1E-5):
D = img - B
avg_cs = np.zeros_like(img)
avg_cs_prime = np.copy(avg_cs)
sizes = np.zeros(num_neighborhoods)
locs_list = [None] * num_neighborhoods
for label in range(1, num_neighborhoods + 1):
locs_list[label - 1] = np.where(neighborhood_map == label)
sizes[label - 1] = np.size(locs_list[label - 1][0])
for _ in range(max_iters):
for label in range(1, num_neighborhoods + 1):
locs = locs_list[label - 1]
size = sizes[label - 1] - 1
avg_cs_prime[locs] = (1 / size) * (np.sum(avg_cs[locs]) - avg_cs[locs])
new_avg_cs = (D * p) + (avg_cs_prime * (1 - p))
if(np.max(np.abs(avg_cs - new_avg_cs)) < tol):
break
avg_cs = new_avg_cs
return f * denoise_bilateral(np.maximum(0, avg_cs))
'''
Estimate values for beta_D
'''
def estimate_wideband_attentuation(depths, illum, radius = 6, max_val = 10.0):
eps = 1E-8
BD = np.minimum(max_val, -np.log(illum + eps) / (np.maximum(0, depths) + eps))
mask = np.where(np.logical_and(depths > eps, illum > eps), 1, 0)
refined_attenuations = denoise_bilateral(closing(np.maximum(0, BD * mask), disk(radius)))
return refined_attenuations, []
'''
Calculate the values of beta_D for an image from the depths, illuminations, and constants
'''
def calculate_beta_D(depths, a, b, c, d):
return (a * np.exp(b * depths)) + (c * np.exp(d * depths))
def filter_data(X, Y, radius_fraction=0.01):
idxs = np.argsort(X)
X_s = X[idxs]
Y_s = Y[idxs]
x_max, x_min = np.max(X), np.min(X)
radius = (radius_fraction * (x_max - x_min))
ds = np.cumsum(X_s - np.roll(X_s, (1,)))
dX = [X_s[0]]
dY = [Y_s[0]]
tempX = []
tempY = []
pos = 0
for i in range(1, ds.shape[0]):
if ds[i] - ds[pos] >= radius:
tempX.append(X_s[i])
tempY.append(Y_s[i])
idxs = np.argsort(tempY)
med_idx = len(idxs) // 2
dX.append(tempX[med_idx])
dY.append(tempY[med_idx])
pos = i
else:
tempX.append(X_s[i])
tempY.append(Y_s[i])
return np.array(dX), np.array(dY)
'''
Estimate coefficients for the 2-term exponential
describing the wideband attenuation
'''
def refine_wideband_attentuation(depths, illum, estimation, restarts=10, min_depth_fraction = 0.1, max_mean_loss_fraction=np.inf, l=1.0, radius_fraction=0.01):
eps = 1E-8
z_max, z_min = np.max(depths), np.min(depths)
min_depth = z_min + (min_depth_fraction * (z_max - z_min))
max_mean_loss = max_mean_loss_fraction * (z_max - z_min)
coefs = None
best_loss = np.inf
locs = np.where(np.logical_and(illum > 0, np.logical_and(depths > min_depth, estimation > eps)))
def calculate_reconstructed_depths(depths, illum, a, b, c, d):
eps = 1E-5
res = -np.log(illum + eps) / (calculate_beta_D(depths, a, b, c, d) + eps)
return res
def loss(a, b, c, d):
return np.mean(np.abs(depths[locs] - calculate_reconstructed_depths(depths[locs], illum[locs], a, b, c, d)))
dX, dY = filter_data(depths[locs], estimation[locs], radius_fraction)
for _ in range(restarts):
try:
optp, pcov = sp.optimize.curve_fit(
f=calculate_beta_D,
xdata=dX,
ydata=dY,
p0=np.abs(np.random.random(4)) * np.array([1., -1., 1., -1.]),
bounds=([0, -100, 0, -100], [100, 0, 100, 0]))
L = loss(*optp)
if L < best_loss:
best_loss = L
coefs = optp
except RuntimeError as re:
print(re, file=sys.stderr)
# Uncomment to see the regression
# plt.clf()
# plt.scatter(depths[locs], estimation[locs])
# plt.plot(np.sort(depths[locs]), calculate_beta_D(np.sort(depths[locs]), *coefs))
# plt.show()
if best_loss > max_mean_loss:
print('Warning: could not find accurate reconstruction. Switching to linear model.', flush=True)
slope, intercept, r_value, p_value, std_err = sp.stats.linregress(depths[locs], estimation[locs])
BD = (slope * depths + intercept)
return l * BD, np.array([slope, intercept])
print(f'Found best loss {best_loss}', flush=True)
BD = l * calculate_beta_D(depths, *coefs)
return BD, coefs
'''
Reconstruct the scene and globally white balance
based the Gray World Hypothesis
'''
def recover_image(img, depths, B, beta_D, nmap):
res = (img - B) * np.exp(beta_D * np.expand_dims(depths, axis=2))
res = np.maximum(0.0, np.minimum(1.0, res))
res[nmap == 0] = 0
res = scale(wbalance_no_red_10p(res))
res[nmap == 0] = img[nmap == 0]
return res
'''
Reconstruct the scene and globally white balance
'''
def recover_image_S4(img, B, illum, nmap):
eps = 1E-8
res = (img - B) / (illum + eps)
res = np.maximum(0.0, np.minimum(1.0, res))
res[nmap == 0] = img[nmap == 0]
return scale(wbalance_no_red_gw(res))
'''
Constructs a neighborhood map from depths and
epsilon
'''
def construct_neighborhood_map(depths, epsilon=0.05):
eps = (np.max(depths) - np.min(depths)) * epsilon
nmap = np.zeros_like(depths).astype(np.int32)
n_neighborhoods = 1
while np.any(nmap == 0):
locs_x, locs_y = np.where(nmap == 0)
start_index = np.random.randint(0, len(locs_x))
start_x, start_y = locs_x[start_index], locs_y[start_index]
q = collections.deque()
q.append((start_x, start_y))
while not len(q) == 0:
x, y = q.pop()
if np.abs(depths[x, y] - depths[start_x, start_y]) <= eps:
nmap[x, y] = n_neighborhoods
if 0 <= x < depths.shape[0] - 1:
x2, y2 = x + 1, y
if nmap[x2, y2] == 0:
q.append((x2, y2))
if 1 <= x < depths.shape[0]:
x2, y2 = x - 1, y
if nmap[x2, y2] == 0:
q.append((x2, y2))
if 0 <= y < depths.shape[1] - 1:
x2, y2 = x, y + 1
if nmap[x2, y2] == 0:
q.append((x2, y2))
if 1 <= y < depths.shape[1]:
x2, y2 = x, y - 1
if nmap[x2, y2] == 0:
q.append((x2, y2))
n_neighborhoods += 1
zeros_size_arr = sorted(zip(*np.unique(nmap[depths == 0], return_counts=True)), key=lambda x: x[1], reverse=True)
if len(zeros_size_arr) > 0:
nmap[nmap == zeros_size_arr[0][0]] = 0 #reset largest background to 0
return nmap, n_neighborhoods - 1
'''
Finds the closest nonzero label to a location
'''
def find_closest_label(nmap, start_x, start_y):
mask = np.zeros_like(nmap).astype(np.bool)
q = collections.deque()
q.append((start_x, start_y))
while not len(q) == 0:
x, y = q.pop()
if 0 <= x < nmap.shape[0] and 0 <= y < nmap.shape[1]:
if nmap[x, y] != 0:
return nmap[x, y]
mask[x, y] = True
if 0 <= x < nmap.shape[0] - 1:
x2, y2 = x + 1, y
if not mask[x2, y2]:
q.append((x2, y2))
if 1 <= x < nmap.shape[0]:
x2, y2 = x - 1, y
if not mask[x2, y2]:
q.append((x2, y2))
if 0 <= y < nmap.shape[1] - 1:
x2, y2 = x, y + 1
if not mask[x2, y2]:
q.append((x2, y2))
if 1 <= y < nmap.shape[1]:
x2, y2 = x, y - 1
if not mask[x2, y2]:
q.append((x2, y2))
'''
Refines the neighborhood map to remove artifacts
'''
def refine_neighborhood_map(nmap, min_size = 10, radius = 3):
refined_nmap = np.zeros_like(nmap)
vals, counts = np.unique(nmap, return_counts=True)
neighborhood_sizes = sorted(zip(vals, counts), key=lambda x: x[1], reverse=True)
num_labels = 1
for label, size in neighborhood_sizes:
if size >= min_size and label != 0:
refined_nmap[nmap == label] = num_labels
num_labels += 1
for label, size in neighborhood_sizes:
if size < min_size and label != 0:
for x, y in zip(*np.where(nmap == label)):
refined_nmap[x, y] = find_closest_label(refined_nmap, x, y)
refined_nmap = closing(refined_nmap, square(radius))
return refined_nmap, num_labels - 1
def load_image_and_depth_map(img_fname, depths_fname, size_limit = 1024):
depths = Image.open(depths_fname)
img = Image.fromarray(rawpy.imread(img_fname).postprocess())
img.thumbnail((size_limit, size_limit), Image.ANTIALIAS)
depths = depths.resize(img.size, Image.ANTIALIAS)
return np.float32(img) / 255.0, np.array(depths)
'''
White balance with 'grey world' hypothesis
'''
def wbalance_gw(img):
dr = 1.0 / np.mean(img[:, :, 0])
dg = 1.0 / np.mean(img[:, :, 1])
db = 1.0 / np.mean(img[:, :, 2])
dsum = dr + dg + db
dr = dr / dsum * 3.
dg = dg / dsum * 3.
db = db / dsum * 3.
img[:, :, 0] *= dr
img[:, :, 1] *= dg
img[:, :, 2] *= db
return img
'''
White balance based on top 10% average values of each channel
'''
def wbalance_10p(img):
dr = 1.0 / np.mean(np.sort(img[:, :, 0], axis=None)[int(round(-1 * np.size(img[:, :, 0]) * 0.1)):])
dg = 1.0 / np.mean(np.sort(img[:, :, 1], axis=None)[int(round(-1 * np.size(img[:, :, 0]) * 0.1)):])
db = 1.0 / np.mean(np.sort(img[:, :, 2], axis=None)[int(round(-1 * np.size(img[:, :, 0]) * 0.1)):])
dsum = dr + dg + db
dr = dr / dsum * 3.
dg = dg / dsum * 3.
db = db / dsum * 3.
img[:, :, 0] *= dr
img[:, :, 1] *= dg
img[:, :, 2] *= db
return img
'''
White balance based on top 10% average values of blue and green channel
'''
def wbalance_no_red_10p(img):
dg = 1.0 / np.mean(np.sort(img[:, :, 1], axis=None)[int(round(-1 * np.size(img[:, :, 0]) * 0.1)):])
db = 1.0 / np.mean(np.sort(img[:, :, 2], axis=None)[int(round(-1 * np.size(img[:, :, 0]) * 0.1)):])
dsum = dg + db
dg = dg / dsum * 2.
db = db / dsum * 2.
img[:, :, 0] *= (db + dg) / 2
img[:, :, 1] *= dg
img[:, :, 2] *= db
return img
'''
White balance with 'grey world' hypothesis
'''
def wbalance_no_red_gw(img):
dg = 1.0 / np.mean(img[:, :, 1])
db = 1.0 / np.mean(img[:, :, 2])
dsum = dg + db
dg = dg / dsum * 2.
db = db / dsum * 2.
img[:, :, 0] *= (db + dg) / 2
img[:, :, 1] *= dg
img[:, :, 2] *= db
return img
def scale(img):
return (img - np.min(img)) / (np.max(img) - np.min(img))
def run_pipeline(img, depths, args):
if 'output_graphs' not in args:
args.output_graphs = False
if args.output_graphs:
plt.imshow(depths)
plt.title('Depth Map')
plt.show()
print('Estimating backscatter...', flush=True)
ptsR, ptsG, ptsB = find_backscatter_estimation_points(img, depths, fraction=0.01, min_depth_percent=args.min_depth)
print('Finding backscatter coefficients...', flush=True)
Br, coefsR = find_backscatter_values(ptsR, depths, restarts=25)
Bg, coefsG = find_backscatter_values(ptsG, depths, restarts=25)
Bb, coefsB = find_backscatter_values(ptsB, depths, restarts=25)
if args.output_graphs:
print('Coefficients: \n{}\n{}\n{}'.format(coefsR, coefsG, coefsB), flush=True)
def eval_xs(xs, coefs):
if len(coefs) == 2:
return xs * coefs[0] + coefs[1]
else:
return ((coefs[0] * (1 - np.exp(-coefs[1] * xs))) + (coefs[2] * np.exp(-coefs[3] * xs)))
# check optimization for B channel
plt.clf()
plt.scatter(ptsB[:, 0].ravel(), ptsB[:, 1].ravel(), c='b')
xs = np.linspace(np.min(ptsB[:, 0]), np.max(ptsB[:, 0]), 1000)
ys = eval_xs(xs, coefsB)
# ys = find_backscatter_values(ptsB, xs)
plt.plot(xs.ravel(), ys.ravel(), c='b')
plt.scatter(ptsG[:, 0].ravel(), ptsG[:, 1].ravel(), c='g')
xs = np.linspace(np.min(ptsG[:, 0]), np.max(ptsG[:, 0]), 1000)
ys = eval_xs(xs, coefsG)
# ys = find_backscatter_values(ptsG, xs)
plt.plot(xs.ravel(), ys.ravel(), c='g')
plt.scatter(ptsR[:, 0].ravel(), ptsR[:, 1].ravel(), c='r')
xs = np.linspace(np.min(ptsR[:, 0]), np.max(ptsR[:, 0]), 1000)
ys = eval_xs(xs, coefsR)
# ys = find_backscatter_values(ptsR, xs)
plt.plot(xs.ravel(), ys.ravel(), c='r')
plt.xlabel('Depth (m)')
plt.ylabel('Color value')
plt.title('Modelled $B_c$ values')
plt.savefig('Bc_values.png')
plt.show()
print('Constructing neighborhood map...', flush=True)
nmap, _ = construct_neighborhood_map(depths, 0.1)
print('Refining neighborhood map...', flush=True)
nmap, n = refine_neighborhood_map(nmap, 50)
if args.output_graphs:
plt.imshow(nmap)
plt.title('Neighborhood map')
plt.show()
print('Estimating illumination...', flush=True)
illR = estimate_illumination(img[:, :, 0], Br, nmap, n, p=args.p, max_iters=100, tol=1E-5, f=args.f)
illG = estimate_illumination(img[:, :, 1], Bg, nmap, n, p=args.p, max_iters=100, tol=1E-5, f=args.f)
illB = estimate_illumination(img[:, :, 2], Bb, nmap, n, p=args.p, max_iters=100, tol=1E-5, f=args.f)
ill = np.stack([illR, illG, illB], axis=2)
if args.output_graphs:
plt.imshow(ill)
plt.title('Illuminant map')
plt.show()
print('Estimating wideband attenuation...', flush=True)
beta_D_r, _ = estimate_wideband_attentuation(depths, illR)
refined_beta_D_r, coefsR = refine_wideband_attentuation(depths, illR, beta_D_r, radius_fraction=args.spread_data_fraction, l=args.l)
beta_D_g, _ = estimate_wideband_attentuation(depths, illG)
refined_beta_D_g, coefsG = refine_wideband_attentuation(depths, illG, beta_D_g, radius_fraction=args.spread_data_fraction, l=args.l)
beta_D_b, _ = estimate_wideband_attentuation(depths, illB)
refined_beta_D_b, coefsB = refine_wideband_attentuation(depths, illB, beta_D_b, radius_fraction=args.spread_data_fraction, l=args.l)
if args.output_graphs:
print('Coefficients: \n{}\n{}\n{}'.format(coefsR, coefsG, coefsB), flush=True)
# plot the wideband attenuation values
plt.clf()
plt.imshow(np.stack([scale(refined_beta_D_r), np.zeros_like(beta_D_r), np.zeros_like(beta_D_r)], axis=2))
plt.show()
plt.clf()
plt.imshow(np.stack([np.zeros_like(beta_D_r), scale(refined_beta_D_g), np.zeros_like(beta_D_r)], axis=2))
plt.show()
plt.clf()
plt.imshow(np.stack([np.zeros_like(beta_D_r), np.zeros_like(beta_D_r), scale(refined_beta_D_b)], axis=2))
plt.show()
# check optimization for beta_D channel
if args.output_graphs:
eps = 1E-5
def eval_xs(xs, coefs):
if len(coefs) == 2:
return xs * coefs[0] + coefs[1]
else:
return (coefs[0] * np.exp(coefs[1] * xs)) + (coefs[2] * np.exp(coefs[3] * xs))
locs = np.where(
np.logical_and(beta_D_r > eps, np.logical_and(beta_D_g > eps, np.logical_and(depths > eps, beta_D_b > eps))))
plt.scatter(depths[locs].ravel(), beta_D_b[locs].ravel(), c='b', alpha=0.1, edgecolors='none')
xs = np.linspace(np.min(depths[locs]), np.max(depths[locs]), 1000)
ys = eval_xs(xs, coefsB)
plt.plot(xs.ravel(), ys.ravel(), c='b')
plt.scatter(depths[locs].ravel(), beta_D_g[locs].ravel(), c='g', alpha=0.1, edgecolors='none')
ys = eval_xs(xs, coefsG)
plt.plot(xs.ravel(), ys.ravel(), c='g')
plt.scatter(depths[locs].ravel(), beta_D_r[locs].ravel(), c='r', alpha=0.1, edgecolors='none')
ys = eval_xs(xs, coefsR)
plt.plot(xs.ravel(), ys.ravel(), c='r')
plt.xlabel('Depth (m)')
plt.ylabel('$\\beta^D$')
plt.title('Modelled $\\beta^D$ values')
plt.savefig('betaD_values.png')
plt.show()
print('Reconstructing image...', flush=True)
B = np.stack([Br, Bg, Bb], axis=2)
beta_D = np.stack([refined_beta_D_r, refined_beta_D_g, refined_beta_D_b], axis=2)
recovered = recover_image(img, depths, B, beta_D, nmap)
if args.output_graphs:
beta_D = (beta_D - np.min(beta_D)) / (np.max(beta_D) - np.min(beta_D))
fig = plt.figure(figsize=(50, 20))
fig.add_subplot(2, 3, 1)
plt.imshow(img)
plt.title('Original Image')
fig.add_subplot(2, 3, 2)
plt.imshow(nmap)
plt.title('Neighborhood Map')
fig.add_subplot(2, 3, 3)
plt.imshow(B)
plt.title('Backscatter Estimation')
fig.add_subplot(2, 3, 4)
plt.imshow(ill)
plt.title('Illumination Map')
fig.add_subplot(2, 3, 5)
plt.imshow(beta_D)
plt.title('Attenuation Coefficients')
fig.add_subplot(2, 3, 6)
plt.imshow(recovered)
plt.title('Recovered Image')
plt.tight_layout(True)
plt.savefig('components.png')
plt.show()
return recovered
def preprocess_for_monodepth(img_fname, output_fname, size_limit=1024):
img = Image.fromarray(rawpy.imread(img_fname).postprocess())
img.thumbnail((size_limit, size_limit), Image.ANTIALIAS)
img_adapteq = exposure.equalize_adapthist(np.array(img), clip_limit=0.03)
Image.fromarray((np.round(img_adapteq * 255.0)).astype(np.uint8)).save(output_fname)
def preprocess_sfm_depth_map(depths, min_depth, max_depth):
z_min = np.min(depths) + (min_depth * (np.max(depths) - np.min(depths)))
z_max = np.min(depths) + (max_depth * (np.max(depths) - np.min(depths)))
if max_depth != 0:
depths[depths == 0] = z_max
depths[depths < z_min] = 0
return depths
def preprocess_monodepth_depth_map(depths, additive_depth, multiply_depth):
depths = ((depths - np.min(depths)) / (
np.max(depths) - np.min(depths))).astype(np.float32)
depths = (multiply_depth * (1.0 - depths)) + additive_depth
return depths
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--image', required=True, help='Input image')
parser.add_argument('--depth-map', required=True, help='Input depth map')
parser.add_argument('--output', default='output.png', help='Output filename')
parser.add_argument('--f', type=float, default=2.0, help='f value (controls brightness)')
parser.add_argument('--l', type=float, default=0.5, help='l value (controls balance of attenuation constants)')
parser.add_argument('--p', type=float, default=0.01, help='p value (controls locality of illuminant map)')
parser.add_argument('--min-depth', type=float, default=0.1, help='Minimum depth value to use in estimations (range 0-1)')
parser.add_argument('--max-depth', type=float, default=1.0, help='Replacement depth percentile value for invalid depths (range 0-1)')
parser.add_argument('--spread-data-fraction', type=float, default=0.01, help='Require data to be this fraction of depth range away from each other in attenuation estimations')
parser.add_argument('--size', type=int, default=320, help='Size to output')
parser.add_argument('--output-graphs', action='store_true', help='Output graphs')
parser.add_argument('--preprocess-for-monodepth', action='store_true', help='Preprocess for monodepth depth maps')
parser.add_argument('--monodepth', action='store_true', help='Preprocess for monodepth')
parser.add_argument('--monodepth-add-depth', type=float, default=2.0, help='Additive value for monodepth map')
parser.add_argument('--monodepth-multiply-depth', type=float, default=10.0, help='Multiplicative value for monodepth map')
parser.add_argument('--equalize-image', action='store_true', help='Histogram equalization for final output')
args = parser.parse_args()
if args.preprocess_for_monodepth:
preprocess_for_monodepth(args.image, args.output, args.size)
else:
print('Loading image...', flush=True)
img, depths = load_image_and_depth_map(args.image, args.depth_map, args.size)
if args.monodepth:
depths = preprocess_monodepth_depth_map(depths, args.monodepth_add_depth, args.monodepth_multiply_depth)
else:
depths = preprocess_sfm_depth_map(depths, args.min_depth, args.max_depth)
recovered = run_pipeline(img, depths, args)
if args.equalize_image:
recovered = exposure.equalize_adapthist(np.array(recovered), clip_limit=0.03)
sigma_est = estimate_sigma(recovered, multichannel=True, average_sigmas=True)
recovered = denoise_tv_chambolle(recovered, sigma_est, multichannel=True)
plt.imsave(args.output, recovered)
print('Done.')