forked from Movelocity/vits_for_chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
245 lines (210 loc) · 9.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import json
import argparse
import itertools
import math
import utils
import commons
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast, GradScaler
from data_utils import (
TextAudioSpeakerLoader,
TextAudioSpeakerCollate,
DistributedBucketSampler,
load_filepaths_and_text
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator,
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
import text
torch.backends.cudnn.benchmark = True
def train(hps):
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
# utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=os.path.join(hps.model_dir, "train"))
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=1,
rank=0,
shuffle=True)
collate_fn = TextAudioSpeakerCollate()
train_loader = DataLoader(train_dataset, num_workers=2, shuffle=False, pin_memory=True,
collate_fn=collate_fn, batch_sampler=train_sampler)
# train_loader = DataLoader(
# train_dataset,
# batch_size=hps.train.batch_size,
# num_workers=2,
# shuffle=True,
# pin_memory=True,
# collate_fn=collate_fn
# )
net_g = SynthesizerTrn(
len(text.symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model).cuda()
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda()
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps)
lr, epoch_start = utils.load_checkpoint(net_g, optim_g, net_d, optim_d, hps)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_start-2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_start-2)
scaler = GradScaler(enabled=hps.train.fp16_run)
for epoch in range(epoch_start, hps.train.epochs + 1):
train_and_evaluate(0, epoch, hps, [net_g, net_d],
[optim_g, optim_d], [scheduler_g, scheduler_d],
scaler, train_loader, logger, [writer, writer_eval])
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
net_g, net_d = nets
optim_g, optim_d = optims
scheduler_g, scheduler_d = schedulers
train_loader = loaders
if writers is not None: writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
net_g.train()
net_d.train()
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers) in enumerate(train_loader):
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
speakers = speakers.cuda(rank, non_blocking=True)
with autocast(enabled=hps.train.fp16_run):
y_hat, l_length, attn, ids_slice, x_mask, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers)
mel = spec_to_mel_torch(spec, config=hps.data)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size//hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(y_hat.squeeze(1), config=hps.data)
y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc_all, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
optim_d.zero_grad()
scaler.scale(loss_disc_all).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), clip_value=None) # 裁剪值None,仅计算和记录, 不产生其它效应
scaler.step(optim_d)
with autocast(enabled=hps.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_dur = torch.sum(l_length.float()) # panelty on the total time of the result
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel # 频谱图之间计算损失
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl # 文本编码对齐语音VAE的中间值
loss_fm = feature_loss(fmap_r, fmap_g) # 真假数据在判别器模块内的feature map应尽量靠近
loss_gen, losses_gen = generator_loss(y_d_hat_g) # 每个值尽量靠近1
loss_gen_all = loss_gen + loss_fm + loss_kl + loss_mel + loss_dur
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), clip_value=None) # 裁剪值None,仅计算和记录, 不产生其它效应
scaler.step(optim_g)
scaler.update()
if epoch % hps.train.log_interval == 0:
# 将训练记录写入tensorboard,
# 若服务器无法开启查看端口,训练完后可将记录下载到本地查看
lr = optim_g.param_groups[0]['lr']
scalar_dict = {
"info/grad_norm_d": grad_norm_d,
"info/grad_norm_g": grad_norm_g,
"info/learning_rate": lr,
"loss/loss_gen_all": loss_gen_all,
"loss/loss_disc_all": loss_disc_all, # 记录判别器损失,可以知道训练有没有崩掉
"loss/g/dur": loss_dur,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
"loss/g/fm": loss_fm,
}
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update(
{"loss/disc_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update(
{"loss/disc_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"sliced/mel_orgin": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"sliced/mel_generated": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"complete/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
"complete/alignment": utils.plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
}
# 写入tensorboard日志
utils.summarize(writer=writer, global_step=epoch, images=image_dict, scalars=scalar_dict)
print('====> Epoch: {}'.format(epoch))
if epoch % hps.train.eval_interval == 1:
evaluate(hps, net_g, writer_eval, epoch)
utils.save_checkpoint(net_g, optim_g, net_d, optim_d, hps.train.learning_rate, epoch, hps.model_dir)
@torch.no_grad()
def evaluate(hps, generator, writer_eval, epoch):
generator.eval()
eval_data = load_filepaths_and_text(hps.data.validation_files)[:4]
audio_dict = {}
image_dict = {}
for i, data in enumerate(eval_data):
phonemes = data[-1]
input_ids = torch.LongTensor(text.tokens2ids(phonemes)).unsqueeze(0).cuda()
input_lengths = torch.LongTensor([input_ids.size(1)]).cuda()
sid = torch.LongTensor([int(data[1])]).cuda()
y_hat = generator.infer(input_ids, input_lengths, sid=sid)[0]
y_hat_mel = mel_spectrogram_torch(
y_hat.squeeze(1).float(),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
audio_dict.update({str(i): y_hat[0, :, :]})
image_dict.update({f"gen/mel/{i}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())})
utils.summarize(
writer=writer_eval,
global_step=epoch,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=hps.data.sampling_rate
)
generator.train()
if __name__ == "__main__":
# Assume Single Node Multi GPUs Training Only
assert torch.cuda.is_available(), "CPU training is not allowed."
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--config', type=str, default="./configs/config.json",
help='JSON file for configuration')
parser.add_argument('-m', '--model', type=str, default="model",
help='Model name')
args = parser.parse_args()
hps = utils.get_hparams(args) # 已创建logs文件夹
print("-------- running ---------")
train(hps)