-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_main.py
121 lines (95 loc) · 5.76 KB
/
eval_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import sys
import numpy as np
import tensorflow as tf
from tensorflow.contrib import learn
from TextCategorization.load_dataset import create_batches, load_test_set
SET_OR_INTERACTIVE = input("Train from start or restore the latest checkpoint: (S/I)\n")
while not (SET_OR_INTERACTIVE.isalpha() and SET_OR_INTERACTIVE.upper() in ['S', 'I']):
SET_OR_INTERACTIVE = input('Invalid input. (S) for test set, (I) for interactive evaluation:')
SET_OR_INTERACTIVE.upper()
train_path = "D:/PycharmProjects/TextCategorization/data/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.train"
test_path = "D:/PycharmProjects/TextCategorization/data/TWNERTC_TC_Coarse Grained NER_No_NoiseReduction.test"
fasttext_model_path = "D:/PycharmProjects/TextCategorization/fasttext_tr_embedding_cache.npy"
tf.flags.DEFINE_string("test_file", test_path, "Test data source")
tf.flags.DEFINE_string("train_file", train_path, "Train data source")
tf.flags.DEFINE_string("fasttext_model", fasttext_model_path, "FastText embeddings source")
# Model Parameters
tf.flags.DEFINE_float("learning_rate", 0.01, "Learning rate, default(0.01)")
tf.flags.DEFINE_float("dropout_keep_prob", 0.5, "Learning rate, default(0.5)")
tf.flags.DEFINE_string("filter_sizes", "3,4,5", "Filter size, default(3,4,5)")
tf.flags.DEFINE_integer("num_filters", 128, "Number of filters, default(128)")
tf.flags.DEFINE_integer("embedding_size", 300, "Embedding size, default(300)")
tf.flags.DEFINE_integer("num_classes", 25, "Number of tasks, default(25)")
tf.flags.DEFINE_integer("top_k_category", 5, "Number of categories to return as result, default(5)")
tf.flags.DEFINE_integer("epoch", 30, "Number of epochs, default(25)")
tf.flags.DEFINE_integer("save_step", 500, "Step to save the model, default(500)")
tf.flags.DEFINE_integer("evaluate_step", 500, "Step to evaluate the model, default(500)")
tf.flags.DEFINE_integer("batch_size", 512, "Training batch size, default(512)")
tf.flags.DEFINE_integer("max_sentence_length", 40, "Maximum sentence length, default(512)")
tf.flags.DEFINE_integer("decay_step", 250, "How many steps before decay learning rate, default(250)")
tf.flags.DEFINE_float("decay_rate", 0.95, "Rate of decay for learning rate, (default: 0.95)")
tf.flags.DEFINE_float("norm_ratio", 1.25,
"The ratio of the sum of gradients norms of trainable variable (default: 1.25)")
FLAGS = tf.flags.FLAGS
FLAGS(sys.argv)
def main():
if SET_OR_INTERACTIVE == "S":
test_sentences, y_test = load_test_set(FLAGS.train_file, FLAGS.test_file)
# else:
# print("Broken!")
# preprocessor = Preprocessor(language="turkish")
# test_sentences = []
# test_sentence = input("Enter a test sentence:")
# y_test = None
# test_sentence = preprocessor.preprocess(test_sentence)
# test_sentences.append(test_sentence)
embedding = np.load(FLAGS.fasttext_model)
print("Restoring the model for test!")
model_number = input("Enter the checkpoint number:")
while not model_number.isdigit() and len(model_number) == 10:
model_number = input("Invalid format. Re-enter:")
checkpoint_dir = "runs/" + model_number + "/checkpoints/"
outdir = os.path.abspath(os.path.join(os.path.curdir, "runs", model_number))
vocabulary_processor = learn.preprocessing.VocabularyProcessor.restore(os.path.join(outdir, "vocab"))
print(test_sentences)
x_test = np.array(list(vocabulary_processor.transform(test_sentences)))
print(x_test)
checkpoint_file = tf.train.latest_checkpoint(checkpoint_dir)
graph = tf.Graph()
with graph.as_default():
session_conf = tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)
sess = tf.Session(config=session_conf)
with sess.as_default():
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file)
input_x = graph.get_operation_by_name("input_x").outputs[0]
input_y = graph.get_operation_by_name("input_y").outputs[0]
keep_prob = graph.get_operation_by_name("keep_prob").outputs[0]
batch_norm = graph.get_operation_by_name("batch_norm").outputs[0]
embedding_placeholder = graph.get_operation_by_name("embedding/pretrained_embedding").outputs[0]
predictions = graph.get_operation_by_name("accuracy/predictions").outputs[0]
predictions_top_k = graph.get_operation_by_name("accuracytopk/top2").outputs[0]
test_batches = create_batches(list(zip(x_test, y_test)), FLAGS.batch_size, 1, shuffle=False)
all_preds = []
all_preds_k = []
for batch in test_batches:
x_batch, y_batch = zip(*batch)
batch_pred, batch_pred_top_k = sess.run([predictions, predictions_top_k], {input_x: x_batch,
input_y: y_batch,
embedding_placeholder: embedding,
keep_prob: 1.0,
batch_norm: False})
all_preds = np.concatenate([all_preds, batch_pred])
print(batch_pred_top_k.shape)
all_preds_k = np.concatenate([all_preds_k, batch_pred_top_k])
if y_test is not None:
correct_predictions = float(sum(all_preds == np.argmax(y_test, axis=1)))
print("Total number of test examples:", len(y_test))
print("Accuracy:", correct_predictions / float(len(y_test)))
else:
print(all_preds)
print(all_preds_k)
if __name__ == '__main__':
main()