-
-
Notifications
You must be signed in to change notification settings - Fork 37
/
fmath.hpp
876 lines (803 loc) · 23.5 KB
/
fmath.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
#pragma once
/**
@brief fast math library for float
@author herumi
@url https://github.com/herumi/fmath/
@note modified new BSD license
http://opensource.org/licenses/BSD-3-Clause
cl /Ox /Ob2 /arch:SSE2 /fp:fast bench.cpp -I../xbyak /EHsc /DNOMINMAX
g++ -O3 -fomit-frame-pointer -fno-operator-names -march=core2 -mssse3 -mfpmath=sse -ffast-math -fexcess-precision=fast
*/
/*
function prototype list
float fmath::exp(float);
double fmath::expd(double);
float fmath::log(float);
__m128 fmath::exp_ps(__m128);
__m256 fmath::exp_ps256(__m256);
__m128 fmath::log_ps(__m128);
double fmath::expd_v(double *, size_t n);
if FMATH_USE_XBYAK is defined then Xbyak version are used
*/
//#define FMATH_USE_XBYAK
#include <math.h>
#include <stddef.h>
#include <assert.h>
#include <limits>
#include <stdlib.h>
#include <float.h>
#include <string.h> // for memcpy
#if defined(_WIN32) && !defined(__GNUC__)
#include <intrin.h>
#ifndef MIE_ALIGN
#define MIE_ALIGN(x) __declspec(align(x))
#endif
#else
#ifndef __GNUC_PREREQ
#define __GNUC_PREREQ(major, minor) ((((__GNUC__) << 16) + (__GNUC_MINOR__)) >= (((major) << 16) + (minor)))
#endif
#if __GNUC_PREREQ(4, 4) || (__clang__ > 0 && __clang_major__ >= 3) || !defined(__GNUC__)
/* GCC >= 4.4 or clang or non-GCC compilers */
#include <x86intrin.h>
#elif __GNUC_PREREQ(4, 1)
/* GCC 4.1, 4.2, and 4.3 do not have x86intrin.h, directly include SSE2 header */
#include <emmintrin.h>
#endif
#ifndef MIE_ALIGN
#define MIE_ALIGN(x) __attribute__((aligned(x)))
#endif
#endif
#ifndef MIE_PACK
#define MIE_PACK(x, y, z, w) ((x) * 64 + (y) * 16 + (z) * 4 + (w))
#endif
#ifdef FMATH_USE_XBYAK
#define XBYAK_NO_OP_NAMES
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
#endif
namespace fmath {
namespace local {
const size_t EXP_TABLE_SIZE = 10;
const size_t EXPD_TABLE_SIZE = 11;
const size_t LOG_TABLE_SIZE = 12;
typedef unsigned long long uint64_t;
union fi {
float f;
unsigned int i;
};
union di {
double d;
uint64_t i;
};
inline unsigned int mask(int x)
{
return (1U << x) - 1;
}
inline uint64_t mask64(int x)
{
return (1ULL << x) - 1;
}
template<class T>
inline const T* cast_to(const void *p)
{
return reinterpret_cast<const T*>(p);
}
template<class T, size_t N>
size_t NumOfArray(const T (&)[N]) { return N; }
/*
exp(88.722839f) = inf ; 0x42b17218
exp(-87.33655f) = 1.175491e-038f(007fffe6) denormal ; 0xc2aeac50
exp(-103.972081f) = 0 ; 0xc2cff1b5
*/
template<size_t N = EXP_TABLE_SIZE>
struct ExpVar {
enum {
s = N,
n = 1 << s,
f88 = 0x42b00000 /* 88.0 */
};
float minX[8];
float maxX[8];
float a[8];
float b[8];
float f1[8];
unsigned int i127s[8];
unsigned int mask_s[8];
unsigned int i7fffffff[8];
unsigned int tbl[n];
ExpVar()
{
float log_2 = ::logf(2.0f);
for (int i = 0; i < 8; i++) {
maxX[i] = 88;
minX[i] = -88;
a[i] = n / log_2;
b[i] = log_2 / n;
f1[i] = 1.0f;
i127s[i] = 127 << s;
i7fffffff[i] = 0x7fffffff;
mask_s[i] = mask(s);
}
for (int i = 0; i < n; i++) {
float y = pow(2.0f, (float)i / n);
fi fi;
fi.f = y;
tbl[i] = fi.i & mask(23);
}
}
};
template<size_t sbit_ = EXPD_TABLE_SIZE>
struct ExpdVar {
enum {
sbit = sbit_,
s = 1UL << sbit,
adj = (1UL << (sbit + 10)) - (1UL << sbit)
};
// A = 1, B = 1, C = 1/2, D = 1/6
double C1[2]; // A
double C2[2]; // D
double C3[2]; // C/D
uint64_t tbl[s];
double a;
double ra;
ExpdVar()
: a(s / ::log(2.0))
, ra(1 / a)
{
for (int i = 0; i < 2; i++) {
#if 0
C1[i] = 1.0;
C2[i] = 0.16667794882310216;
C3[i] = 2.9997969303278795;
#else
C1[i] = 1.0;
C2[i] = 0.16666666685227835064;
C3[i] = 3.0000000027955394;
#endif
}
for (int i = 0; i < s; i++) {
di di;
di.d = ::pow(2.0, i * (1.0 / s));
tbl[i] = di.i & mask64(52);
}
}
};
template<size_t N = LOG_TABLE_SIZE>
struct LogVar {
enum {
LEN = N - 1
};
unsigned int m1[4]; // 0
unsigned int m2[4]; // 16
unsigned int m3[4]; // 32
float m4[4]; // 48
unsigned int m5[4]; // 64
struct {
float app;
float rev;
} tbl[1 << LEN];
float c_log2;
LogVar()
: c_log2(::logf(2.0f) / (1 << 23))
{
const double e = 1 / double(1 << 24);
const double h = 1 / double(1 << LEN);
const size_t n = 1U << LEN;
for (size_t i = 0; i < n; i++) {
double x = 1 + double(i) / n;
double a = ::log(x);
tbl[i].app = (float)a;
if (i < n - 1) {
double b = ::log(x + h - e);
tbl[i].rev = (float)((b - a) / ((h - e) * (1 << 23)));
} else {
tbl[i].rev = (float)(1 / (x * (1 << 23)));
}
}
for (int i = 0; i < 4; i++) {
m1[i] = mask(8) << 23;
m2[i] = mask(LEN) << (23 - LEN);
m3[i] = mask(23 - LEN);
m4[i] = c_log2;
m5[i] = 127U << 23;
}
}
};
#ifdef FMATH_USE_XBYAK
struct ExpCode : public Xbyak::CodeGenerator {
float (*exp_)(float);
__m128 (*exp_ps_)(__m128);
template<size_t N>
ExpCode(const ExpVar<N> *self)
{
Xbyak::util::Cpu cpu;
try {
makeExp(self, cpu);
exp_ = getCode<float (*)(float)>();
align(16);
exp_ps_ = getCurr<__m128(*)(__m128)>();
makeExpPs(self, cpu);
return;
} catch (std::exception& e) {
fprintf(stderr, "ExpCode ERR:%s\n", e.what());
} catch (...) {
fprintf(stderr, "ExpCode ERR:unknown error\n");
}
::exit(1);
}
template<size_t N>
void makeExp(const ExpVar<N> *self, const Xbyak::util::Cpu& /*cpu*/)
{
typedef ExpVar<N> Self;
using namespace local;
using namespace Xbyak;
inLocalLabel();
#ifdef XBYAK64
const Reg64& base = rcx;
const Reg64& a = rax;
#else
const Reg32& base = ecx;
const Reg32& a = eax;
#endif
mov(base, (size_t)self);
#ifdef XBYAK32
movss(xm0, ptr [esp + 4]);
#endif
L(".retry");
movaps(xm1, xm0);
movd(edx, xm0);
mulss(xm1, ptr [base + offsetof(Self, a)]); // t
and_(edx, 0x7fffffff);
cvtss2si(eax, xm1);
cmp(edx, ExpVar<N>::f88);
jg(".overflow");
lea(edx, ptr [eax + (127 << self->s)]);
cvtsi2ss(xm1, eax);
and_(eax, mask(self->s)); // v
mov(eax, ptr [base + a * 4 + offsetof(Self, tbl)]); // expVar.tbl[v]
shr(edx, self->s);
mulss(xm1, ptr [base + offsetof(Self, b)]);
shl(edx, 23); // u
subss(xm0, xm1); // t
or_(eax, edx); // fi.f
addss(xm0, ptr [base + offsetof(Self, f1)]);
movd(xm1, eax);
mulss(xm0, xm1);
#ifdef XBYAK32
movss(ptr[esp + 4], xm0);
fld(dword[esp + 4]);
#endif
ret();
L(".overflow");
minss(xm0, ptr [base + offsetof(Self, maxX)]);
maxss(xm0, ptr [base + offsetof(Self, minX)]);
jmp(".retry");
outLocalLabel();
}
template<size_t N>
void makeExpPs(const ExpVar<N> *self, const Xbyak::util::Cpu& cpu)
{
typedef ExpVar<N> Self;
using namespace local;
using namespace Xbyak;
inLocalLabel();
#ifdef XBYAK64
const Reg64& base = rcx;
const Reg64& a = rax;
const Reg64& d = rdx;
#else
const Reg32& base = ecx;
const Reg32& a = eax;
const Reg32& d = edx;
#endif
/*
if abs(x) >= maxX then x = max(min(x, maxX), -maxX) and try
minps, maxps are very slow then avoid them
*/
const bool useSSE41 = cpu.has(Xbyak::util::Cpu::tSSE41);
#if defined(XBYAK64_WIN) && !defined(__INTEL_COMPILER)
movaps(xm0, ptr [rcx]);
#endif
mov(base, (size_t)self);
L(".retry");
movaps(xm5, xm0);
andps(xm5, ptr [base + offsetof(Self, i7fffffff)]);
movaps(xm3, ptr [base + offsetof(Self, a)]);
movaps(xm4, ptr [base + offsetof(Self, b)]);
pcmpgtd(xm5, ptr [base + offsetof(Self, maxX)]);
mulps(xm3, xm0);
movaps(xm1, ptr [base + offsetof(Self, i127s)]);
pmovmskb(eax, xm5);
movaps(xm5, ptr [base + offsetof(Self, mask_s)]);
cvtps2dq(xm2, xm3);
pand(xm5, xm2);
cvtdq2ps(xm3, xm2);
test(eax, eax);
jnz(".overflow");
paddd(xm1, xm2);
movd(eax, xm5);
mulps(xm4, xm3);
pextrw(edx, xm5, 2);
subps(xm0, xm4);
movd(xm4, ptr [base + a * 4 + offsetof(Self, tbl)]);
addps(xm0, ptr [base + offsetof(Self, f1)]);
pextrw(eax, xm5, 4);
if (useSSE41) {
pinsrd(xm4, ptr [base + d * 4 + offsetof(Self, tbl)], 1);
} else {
movd(xm3, ptr [base + d * 4 + offsetof(Self, tbl)]);
movlhps(xm4, xm3);
}
pextrw(edx, xm5, 6);
psrld(xm1, self->s);
pslld(xm1, 23);
if (useSSE41) {
pinsrd(xm4, ptr [base + a * 4 + offsetof(Self, tbl)], 2);
pinsrd(xm4, ptr [base + d * 4 + offsetof(Self, tbl)], 3);
} else {
movd(xm2, ptr [base + a * 4 + offsetof(Self, tbl)]);
movd(xm3, ptr [base + d * 4 + offsetof(Self, tbl)]);
movlhps(xm2, xm3);
shufps(xm4, xm2, MIE_PACK(2, 0, 2, 0));
}
por(xm1, xm4);
mulps(xm0, xm1);
ret();
L(".overflow");
minps(xm0, ptr [base + offsetof(Self, maxX)]);
maxps(xm0, ptr [base + offsetof(Self, minX)]);
jmp(".retry");
outLocalLabel();
}
};
#endif
/* to define static variables in fmath.hpp */
template<size_t EXP_N = EXP_TABLE_SIZE, size_t LOG_N = LOG_TABLE_SIZE, size_t EXPD_N = EXPD_TABLE_SIZE>
struct C {
static const ExpVar<EXP_N> expVar;
static const LogVar<LOG_N> logVar;
static const ExpdVar<EXPD_N> expdVar;
#ifdef FMATH_USE_XBYAK
static const ExpCode& getInstance() {
static const ExpCode expCode(&expVar);
return expCode;
}
#endif
};
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const ExpVar<EXP_N> C<EXP_N, LOG_N, EXPD_N>::expVar;
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const LogVar<LOG_N> C<EXP_N, LOG_N, EXPD_N>::logVar;
template<size_t EXP_N, size_t LOG_N, size_t EXPD_N>
MIE_ALIGN(32) const ExpdVar<EXPD_N> C<EXP_N, LOG_N, EXPD_N>::expdVar;
} // fmath::local
#ifdef FMATH_USE_XBYAK
inline float expC(float x)
#else
inline float exp(float x)
#endif
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar;
#if 1
__m128 x1 = _mm_set_ss(x);
int limit = _mm_cvtss_si32(x1) & 0x7fffffff;
if (limit > ExpVar<>::f88) {
x1 = _mm_min_ss(x1, _mm_load_ss(expVar.maxX));
x1 = _mm_max_ss(x1, _mm_load_ss(expVar.minX));
}
int r = _mm_cvtss_si32(_mm_mul_ss(x1, _mm_load_ss(expVar.a)));
unsigned int v = r & mask(expVar.s);
float t = _mm_cvtss_f32(x1) - r * expVar.b[0];
int u = r >> expVar.s;
fi fi;
fi.i = ((u + 127) << 23) | expVar.tbl[v];
return (1 + t) * fi.f;
#else
x = std::min(x, expVar.maxX[0]);
x = std::max(x, expVar.minX[0]);
float t = x * expVar.a[0];
const float magic = (1 << 23) + (1 << 22); // to round
t += magic;
fi fi;
fi.f = t;
t = x - (t - magic) * expVar.b[0];
int u = ((fi.i + (127 << expVar.s)) >> expVar.s) << 23;
unsigned int v = fi.i & mask(expVar.s);
fi.i = u | expVar.tbl[v];
return (1 + t) * fi.f;
// return (1 + t) * pow(2, (float)u) * pow(2, (float)v / n);
#endif
}
inline double expd(double x)
{
if (x <= -708.39641853226408) return 0;
if (x >= 709.78271289338397) return std::numeric_limits<double>::infinity();
using namespace local;
const ExpdVar<>& c = C<>::expdVar;
#if 1
const double _b = double(uint64_t(3) << 51);
__m128d b = _mm_load_sd(&_b);
__m128d xx = _mm_load_sd(&x);
__m128d d = _mm_add_sd(_mm_mul_sd(xx, _mm_load_sd(&c.a)), b);
uint64_t di = _mm_cvtsi128_si32(_mm_castpd_si128(d));
uint64_t iax = c.tbl[di & mask(c.sbit)];
__m128d _t = _mm_sub_sd(_mm_mul_sd(_mm_sub_sd(d, b), _mm_load_sd(&c.ra)), xx);
uint64_t u = ((di + c.adj) >> c.sbit) << 52;
double t;
_mm_store_sd(&t, _t);
double y = (c.C3[0] - t) * (t * t) * c.C2[0] - t + c.C1[0];
double did;
u |= iax;
memcpy(&did, &u, sizeof(did));
return y * did;
#else
/*
remark : -ffast-math option of gcc may generate bad code for fmath::expd
*/
const uint64_t b = 3ULL << 51;
di di;
di.d = x * c.a + b;
uint64_t iax = c.tbl[di.i & mask(c.sbit)];
double t = (di.d - b) * c.ra - x;
uint64_t u = ((di.i + c.adj) >> c.sbit) << 52;
double y = (c.C3[0] - t) * (t * t) * c.C2[0] - t + c.C1[0];
di.i = u | iax;
return y * di.d;
#endif
}
inline __m128d exp_pd(__m128d x)
{
#if 0 // faster on Haswell
MIE_ALIGN(16) double buf[2];
memcpy(buf, &x, sizeof(buf));
buf[0] = expd(buf[0]);
buf[1] = expd(buf[1]);
__m128d y;
memcpy(&y, buf, sizeof(buf));
return y;
#else // faster on Skeylake
using namespace local;
const ExpdVar<>& c = C<>::expdVar;
const double b = double(3ULL << 51);
const __m128d mC1 = *cast_to<__m128d>(c.C1);
const __m128d mC2 = *cast_to<__m128d>(c.C2);
const __m128d mC3 = *cast_to<__m128d>(c.C3);
const __m128d ma = _mm_set1_pd(c.a);
const __m128d mra = _mm_set1_pd(c.ra);
const __m128i madj = _mm_set1_epi32(c.adj);
MIE_ALIGN(16) const double expMax[2] = { 709.78271289338397, 709.78271289338397 };
MIE_ALIGN(16) const double expMin[2] = { -708.39641853226408, -708.39641853226408 };
x = _mm_min_pd(x, *(const __m128d*)expMax);
x = _mm_max_pd(x, *(const __m128d*)expMin);
__m128d d = _mm_mul_pd(x, ma);
d = _mm_add_pd(d, _mm_set1_pd(b));
int adr0 = _mm_cvtsi128_si32(_mm_castpd_si128(d)) & mask(c.sbit);
int adr1 = _mm_cvtsi128_si32(_mm_srli_si128(_mm_castpd_si128(d), 8)) & mask(c.sbit);
__m128i iaxL = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr0]));
__m128i iax = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr1]));
iax = _mm_unpacklo_epi64(iaxL, iax);
__m128d t = _mm_sub_pd(_mm_mul_pd(_mm_sub_pd(d, _mm_set1_pd(b)), mra), x);
__m128i u = _mm_castpd_si128(d);
u = _mm_add_epi64(u, madj);
u = _mm_srli_epi64(u, c.sbit);
u = _mm_slli_epi64(u, 52);
u = _mm_or_si128(u, iax);
__m128d y = _mm_mul_pd(_mm_sub_pd(mC3, t), _mm_mul_pd(t, t));
y = _mm_mul_pd(y, mC2);
y = _mm_add_pd(_mm_sub_pd(y, t), mC1);
y = _mm_mul_pd(y, _mm_castsi128_pd(u));
return y;
#endif
}
/*
px : pointer to array of double
n : size of array
*/
inline void expd_v(double *px, size_t n)
{
using namespace local;
const ExpdVar<>& c = C<>::expdVar;
const double b = double(3ULL << 51);
#ifdef __AVX2__
size_t r = n & 3;
n &= ~3;
const __m256d mC1 = _mm256_set1_pd(c.C1[0]);
const __m256d mC2 = _mm256_set1_pd(c.C2[0]);
const __m256d mC3 = _mm256_set1_pd(c.C3[0]);
const __m256d ma = _mm256_set1_pd(c.a);
const __m256d mra = _mm256_set1_pd(c.ra);
const __m256i madj = _mm256_set1_epi64x(c.adj);
const __m256i maskSbit = _mm256_set1_epi64x(mask(c.sbit));
const __m256d expMax = _mm256_set1_pd(709.78272569338397);
const __m256d expMin = _mm256_set1_pd(-708.39641853226408);
for (size_t i = 0; i < n; i += 4) {
__m256d x = _mm256_load_pd(px);
x = _mm256_min_pd(x, expMax);
x = _mm256_max_pd(x, expMin);
__m256d d = _mm256_mul_pd(x, ma);
d = _mm256_add_pd(d, _mm256_set1_pd(b));
__m256i adr = _mm256_and_si256(_mm256_castpd_si256(d), maskSbit);
__m256i iax = _mm256_i64gather_epi64((const long long*)c.tbl, adr, 8);
__m256d t = _mm256_sub_pd(_mm256_mul_pd(_mm256_sub_pd(d, _mm256_set1_pd(b)), mra), x);
__m256i u = _mm256_castpd_si256(d);
u = _mm256_add_epi64(u, madj);
u = _mm256_srli_epi64(u, c.sbit);
u = _mm256_slli_epi64(u, 52);
u = _mm256_or_si256(u, iax);
__m256d y = _mm256_mul_pd(_mm256_sub_pd(mC3, t), _mm256_mul_pd(t, t));
y = _mm256_mul_pd(y, mC2);
y = _mm256_add_pd(_mm256_sub_pd(y, t), mC1);
_mm256_store_pd(px, _mm256_mul_pd(y, _mm256_castsi256_pd(u)));
px += 4;
}
#else
size_t r = n & 1;
n &= ~1;
const __m128d mC1 = _mm_set1_pd(c.C1[0]);
const __m128d mC2 = _mm_set1_pd(c.C2[0]);
const __m128d mC3 = _mm_set1_pd(c.C3[0]);
const __m128d ma = _mm_set1_pd(c.a);
const __m128d mra = _mm_set1_pd(c.ra);
#if defined(__x86_64__) || defined(_WIN64)
const __m128i madj = _mm_set1_epi64x(c.adj);
#else
const __m128i madj = _mm_set_epi32(0, c.adj, 0, c.adj);
#endif
const __m128d expMax = _mm_set1_pd(709.78272569338397);
const __m128d expMin = _mm_set1_pd(-708.39641853226408);
for (size_t i = 0; i < n; i += 2) {
__m128d x = _mm_load_pd(px);
x = _mm_min_pd(x, expMax);
x = _mm_max_pd(x, expMin);
__m128d d = _mm_mul_pd(x, ma);
d = _mm_add_pd(d, _mm_set1_pd(b));
int adr0 = _mm_cvtsi128_si32(_mm_castpd_si128(d)) & mask(c.sbit);
int adr1 = _mm_cvtsi128_si32(_mm_srli_si128(_mm_castpd_si128(d), 8)) & mask(c.sbit);
__m128i iaxL = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr0]));
__m128i iax = _mm_castpd_si128(_mm_load_sd((const double*)&c.tbl[adr1]));
iax = _mm_unpacklo_epi64(iaxL, iax);
__m128d t = _mm_sub_pd(_mm_mul_pd(_mm_sub_pd(d, _mm_set1_pd(b)), mra), x);
__m128i u = _mm_castpd_si128(d);
u = _mm_add_epi64(u, madj);
u = _mm_srli_epi64(u, c.sbit);
u = _mm_slli_epi64(u, 52);
u = _mm_or_si128(u, iax);
__m128d y = _mm_mul_pd(_mm_sub_pd(mC3, t), _mm_mul_pd(t, t));
y = _mm_mul_pd(y, mC2);
y = _mm_add_pd(_mm_sub_pd(y, t), mC1);
_mm_store_pd(px, _mm_mul_pd(y, _mm_castsi128_pd(u)));
px += 2;
}
#endif
for (size_t i = 0; i < r; i++) {
px[i] = expd(px[i]);
}
}
#ifdef FMATH_USE_XBYAK
inline __m128 exp_psC(__m128 x)
#else
inline __m128 exp_ps(__m128 x)
#endif
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar;
__m128i limit = _mm_castps_si128(_mm_and_ps(x, *cast_to<__m128>(expVar.i7fffffff)));
int over = _mm_movemask_epi8(_mm_cmpgt_epi32(limit, *cast_to<__m128i>(expVar.maxX)));
if (over) {
x = _mm_min_ps(x, _mm_load_ps(expVar.maxX));
x = _mm_max_ps(x, _mm_load_ps(expVar.minX));
}
__m128i r = _mm_cvtps_epi32(_mm_mul_ps(x, *cast_to<__m128>(expVar.a)));
__m128 t = _mm_sub_ps(x, _mm_mul_ps(_mm_cvtepi32_ps(r), *cast_to<__m128>(expVar.b)));
t = _mm_add_ps(t, *cast_to<__m128>(expVar.f1));
__m128i v4 = _mm_and_si128(r, *cast_to<__m128i>(expVar.mask_s));
__m128i u4 = _mm_add_epi32(r, *cast_to<__m128i>(expVar.i127s));
u4 = _mm_srli_epi32(u4, expVar.s);
u4 = _mm_slli_epi32(u4, 23);
#ifdef __AVX2__ // fast?
__m128i ti = _mm_i32gather_epi32((const int*)expVar.tbl, v4, 4);
__m128 t0 = _mm_castsi128_ps(ti);
#else
unsigned int v0, v1, v2, v3;
v0 = _mm_cvtsi128_si32(v4);
v1 = _mm_extract_epi16(v4, 2);
v2 = _mm_extract_epi16(v4, 4);
v3 = _mm_extract_epi16(v4, 6);
#if 1
__m128 t0, t1, t2, t3;
t0 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v0]));
t1 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v1]));
t2 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v2]));
t3 = _mm_castsi128_ps(_mm_set1_epi32(expVar.tbl[v3]));
t1 = _mm_movelh_ps(t1, t3);
t1 = _mm_castsi128_ps(_mm_slli_epi64(_mm_castps_si128(t1), 32));
t0 = _mm_movelh_ps(t0, t2);
t0 = _mm_castsi128_ps(_mm_srli_epi64(_mm_castps_si128(t0), 32));
t0 = _mm_or_ps(t0, t1);
#else
__m128i ti = _mm_castps_si128(_mm_load_ss((const float*)&expVar.tbl[v0]));
ti = _mm_insert_epi32(ti, expVar.tbl[v1], 1);
ti = _mm_insert_epi32(ti, expVar.tbl[v2], 2);
ti = _mm_insert_epi32(ti, expVar.tbl[v3], 3);
__m128 t0 = _mm_castsi128_ps(ti);
#endif
#endif
t0 = _mm_or_ps(t0, _mm_castsi128_ps(u4));
t = _mm_mul_ps(t, t0);
return t;
}
#ifdef __AVX2__
inline __m256 exp_ps256(__m256 x)
{
using namespace local;
const ExpVar<>& expVar = C<>::expVar;
__m256i limit = _mm256_castps_si256(_mm256_and_ps(x, *reinterpret_cast<const __m256*>(expVar.i7fffffff)));
int over = _mm256_movemask_epi8(_mm256_cmpgt_epi32(limit, *reinterpret_cast<const __m256i*>(expVar.maxX)));
if (over) {
x = _mm256_min_ps(x, _mm256_load_ps(expVar.maxX));
x = _mm256_max_ps(x, _mm256_load_ps(expVar.minX));
}
__m256i r = _mm256_cvtps_epi32(_mm256_mul_ps(x, *reinterpret_cast<const __m256*>(expVar.a)));
__m256 t = _mm256_sub_ps(x, _mm256_mul_ps(_mm256_cvtepi32_ps(r), *reinterpret_cast<const __m256*>(expVar.b)));
t = _mm256_add_ps(t, *reinterpret_cast<const __m256*>(expVar.f1));
__m256i v8 = _mm256_and_si256(r, *reinterpret_cast<const __m256i*>(expVar.mask_s));
__m256i u8 = _mm256_add_epi32(r, *reinterpret_cast<const __m256i*>(expVar.i127s));
u8 = _mm256_srli_epi32(u8, expVar.s);
u8 = _mm256_slli_epi32(u8, 23);
#if 1
__m256i ti = _mm256_i32gather_epi32((const int*)expVar.tbl, v8, 4);
#else
unsigned int v0, v1, v2, v3, v4, v5, v6, v7;
v0 = _mm256_extract_epi16(v8, 0);
v1 = _mm256_extract_epi16(v8, 2);
v2 = _mm256_extract_epi16(v8, 4);
v3 = _mm256_extract_epi16(v8, 6);
v4 = _mm256_extract_epi16(v8, 8);
v5 = _mm256_extract_epi16(v8, 10);
v6 = _mm256_extract_epi16(v8, 12);
v7 = _mm256_extract_epi16(v8, 14);
__m256i ti = _mm256_setzero_si256();
ti = _mm256_insert_epi32(ti, expVar.tbl[v0], 0);
ti = _mm256_insert_epi32(ti, expVar.tbl[v1], 1);
ti = _mm256_insert_epi32(ti, expVar.tbl[v2], 2);
ti = _mm256_insert_epi32(ti, expVar.tbl[v3], 3);
ti = _mm256_insert_epi32(ti, expVar.tbl[v4], 4);
ti = _mm256_insert_epi32(ti, expVar.tbl[v5], 5);
ti = _mm256_insert_epi32(ti, expVar.tbl[v6], 6);
ti = _mm256_insert_epi32(ti, expVar.tbl[v7], 7);
#endif
__m256 t0 = _mm256_castsi256_ps(ti);
t0 = _mm256_or_ps(t0, _mm256_castsi256_ps(u8));
t = _mm256_mul_ps(t, t0);
return t;
}
#endif
inline float log(float x)
{
using namespace local;
const LogVar<>& logVar = C<>::logVar;
const size_t logLen = logVar.LEN;
fi fi;
fi.f = x;
int a = fi.i & (mask(8) << 23);
unsigned int b1 = fi.i & (mask(logLen) << (23 - logLen));
unsigned int b2 = fi.i & mask(23 - logLen);
int idx = b1 >> (23 - logLen);
float f = float(a - (127 << 23)) * logVar.c_log2 + logVar.tbl[idx].app + float(b2) * logVar.tbl[idx].rev;
return f;
}
inline __m128 log_ps(__m128 x)
{
using namespace local;
const LogVar<>& logVar = C<>::logVar;
__m128i xi = _mm_castps_si128(x);
__m128i idx = _mm_srli_epi32(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m2)), (23 - logVar.LEN));
__m128 a = _mm_cvtepi32_ps(_mm_sub_epi32(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m1)), *cast_to<__m128i>(logVar.m5)));
__m128 b2 = _mm_cvtepi32_ps(_mm_and_si128(xi, *cast_to<__m128i>(logVar.m3)));
a = _mm_mul_ps(a, *cast_to<__m128>(logVar.m4)); // c_log2
unsigned int i0 = _mm_cvtsi128_si32(idx);
#if 1
unsigned int i1 = _mm_extract_epi16(idx, 2);
unsigned int i2 = _mm_extract_epi16(idx, 4);
unsigned int i3 = _mm_extract_epi16(idx, 6);
#else
idx = _mm_srli_si128(idx, 4);
unsigned int i1 = _mm_cvtsi128_si32(idx);
idx = _mm_srli_si128(idx, 4);
unsigned int i2 = _mm_cvtsi128_si32(idx);
idx = _mm_srli_si128(idx, 4);
unsigned int i3 = _mm_cvtsi128_si32(idx);
#endif
__m128 app, rev;
__m128i L = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i0].app));
__m128i H = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i1].app));
__m128 t = _mm_castsi128_ps(_mm_unpacklo_epi64(L, H));
L = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i2].app));
H = _mm_loadl_epi64(cast_to<__m128i>(&logVar.tbl[i3].app));
rev = _mm_castsi128_ps(_mm_unpacklo_epi64(L, H));
app = _mm_shuffle_ps(t, rev, MIE_PACK(2, 0, 2, 0));
rev = _mm_shuffle_ps(t, rev, MIE_PACK(3, 1, 3, 1));
a = _mm_add_ps(a, app);
rev = _mm_mul_ps(b2, rev);
return _mm_add_ps(a, rev);
}
#ifndef __CYGWIN__
// cygwin defines log2() in global namespace!
// log2(x) = log(x) / log(2)
inline float log2(float x) { return fmath::log(x) * 1.442695f; }
#endif
/*
for given y > 0
get f_y(x) := pow(x, y) for x >= 0
*/
class PowGenerator {
enum {
N = 11
};
float tbl0_[256];
struct {
float app;
float rev;
} tbl1_[1 << N];
public:
PowGenerator(float y)
{
for (int i = 0; i < 256; i++) {
tbl0_[i] = ::powf(2, (i - 127) * y);
}
const double e = 1 / double(1 << 24);
const double h = 1 / double(1 << N);
const size_t n = 1U << N;
for (size_t i = 0; i < n; i++) {
double x = 1 + double(i) / n;
double a = ::pow(x, (double)y);
tbl1_[i].app = (float)a;
double b = ::pow(x + h - e, (double)y);
tbl1_[i].rev = (float)((b - a) / (h - e) / (1 << 23));
}
}
float get(float x) const
{
using namespace local;
fi fi;
fi.f = x;
int a = (fi.i >> 23) & mask(8);
unsigned int b = fi.i & mask(23);
unsigned int b1 = b & (mask(N) << (23 - N));
unsigned int b2 = b & mask(23 - N);
float f;
int idx = b1 >> (23 - N);
f = tbl0_[a] * (tbl1_[idx].app + float(b2) * tbl1_[idx].rev);
return f;
}
};
// for Xbyak version
#ifdef FMATH_USE_XBYAK
float (*const exp)(float) = local::C<>::getInstance().exp_;
__m128 (*const exp_ps)(__m128) = local::C<>::getInstance().exp_ps_;
#endif
// exp2(x) = pow(2, x)
inline float exp2(float x) { return fmath::exp(x * 0.6931472f); }
/*
this function may be optimized in the future
*/
inline __m128d log_pd(__m128d x)
{
double d[2];
memcpy(d, &x, sizeof(d));
d[0] = ::log(d[0]);
d[1] = ::log(d[1]);
__m128d m;
memcpy(&m, d, sizeof(m));
return m;
}
inline __m128 pow_ps(__m128 x, __m128 y)
{
return exp_ps(_mm_mul_ps(y, log_ps(x)));
}
inline __m128d pow_pd(__m128d x, __m128d y)
{
return exp_pd(_mm_mul_pd(y, log_pd(x)));
}
} // fmath