diff --git a/Comparison-objective-function.R b/Comparison-objective-function.R new file mode 100644 index 0000000..2980d96 --- /dev/null +++ b/Comparison-objective-function.R @@ -0,0 +1,202 @@ +## Naming conventions +## 'sim' --> Related to Ecosim +## 'spa' --> Related to Ecospace +## 'obs' --> Related to observed timeseries data, i.e., that Ecosim was fitted to. +## 'B' --> Denotes biomass +## 'C' --> Denotes catch + +## Setup ----------------------------------------------------------------------- +rm(list=ls()) +source("./functions.R") ## Pull in functions +library(dplyr) + +## Input set up ---------------------------------------------------------------- +ewe_name = "EwE_Outputs" +sim_scenario = "sim-spa_01" +obs_TS_name = "TS_updated_IB13" +srt_year = 1980 +spa_scenarios = c("spa_00", "spa_01", "spa_02_MOM6-ISIMIP3a", "spa_03_MOM6-ISIMIP3a_PP-phyc-vint") +spa_scen_names = c("01 Base", "02 MODIS-ChlA", "03 MOM6-ChlA", "04 MOM6-Vint") + +## User-defined output parameters ---------------------------------------------- +today_date <- format(Sys.Date(), "%Y-%m-%d") +out_file_notes = "multispa" +plot_name_xY = paste0("B_scaled_xY_", out_file_notes) +#plot_name_xM = paste0("B_scaled_xM_", out_file_notes) + +## Set scaling parameters +#init_years_toscale = 5 +init_years_toscale = 2016-1980 + 1 ## 36. This will scale all outputs to the global average +init_months_toscale = init_years_toscale * 12 + +## ----------------------------------------------------------------------------- +## +## Read-in ANNUAL Observed, Ecosim, and Ecospace TS +dir_sim = paste0("./", ewe_name, "/ecosim_", sim_scenario, "/") + +## Read-in Ecosim annual biomass +filename = paste0(dir_sim, "biomass_annual.csv") +num_skip_sim = f.find_start_line(filename, flag = srt_year) + +simB_xY <- read.csv(paste0(dir_sim, "biomass_annual.csv"), skip = num_skip_sim) +years = simB_xY$year.group ## Get date range from Ecosim +simB_xY$year.group = NULL + +## Read-in Ecosim annual catches +simC_xY <- read.csv(paste0(dir_sim, "catch_annual.csv"), skip = num_skip_sim) +simC_xY$year.group = NULL + +## Read-in Ecospace annual biomass and catches --------------------------------- +ls_spaB_xY <- list() +ls_spaC_xY <- list() +for (i in 1:length(spa_scenarios)) { + dir_spa = paste0("./", ewe_name, "/", spa_scenarios[i], "/") + filename <- paste0(dir_spa, "Ecospace_Annual_Average_Biomass.csv") + num_skip_spa <- f.find_start_line(filename, flag = "Year") + spaB_xY <- read.csv(paste0(dir_spa, "Ecospace_Annual_Average_Biomass.csv"), + skip = num_skip_spa, header = TRUE) + spaB_xY$Year = NULL + + ## Standardize FG names ------------------------------ + fg_names = f.standardize_group_names(colnames(spaB_xY)) + num_fg = length(fg_names) + fg_df <- data.frame( + pool_code = 1:num_fg, + group_name = paste(sprintf("%02d", 1:num_fg), + gsub("_", " ", fg_names)) + ) + + ## Set row and column names + rownames(spaB_xY) = rownames(simB_xY) = years + colnames(spaB_xY) = colnames(simB_xY) = fg_df$group_name + + ## Add current spaB_xY reading into the list object ---- + ls_spaB_xY[[i]] <- spaB_xY + + ## Read-in Ecospace annual catch + spaC_xY <- read.csv(paste0(dir_spa, "Ecospace_Annual_Average_Catch.csv"), + skip = num_skip_spa, header = TRUE) + spaC_xY$Year = NULL + ls_spaC_xY[[i]] <- spaC_xY +} + +## ----------------------------------------------------------------------------- +## Prepare months and date series objects +start_y <- min(years) +end_y <- max(years) +date_series <- seq(as.Date(paste0(start_y, "-01-01")), as.Date(paste0(end_y, "-12-01")), by = "1 month") +year_series <- seq(as.Date(paste0(start_y, "-01-01")), as.Date(paste0(end_y, "-12-01")), by = "1 year") +ym_series <- format(date_series, "%Y-%m") + +## Read in MONTHLY biomasses +simB_xM <- read.csv(paste0(dir_sim, "biomass_monthly.csv"), skip = num_skip_sim); simB_xM$timestep.group = NULL +simC_xM <- read.csv(paste0(dir_sim, "catch_monthly.csv"), skip = num_skip_sim); simC_xM$timestep.group = NULL +spaB_xM <- read.csv(paste0(dir_spa, "Ecospace_Average_Biomass.csv"), skip = num_skip_spa, header = TRUE); spaB_xM$TimeStep = NULL +rownames(spaB_xM) = rownames(simB_xM) = ym_series + +## Read in "observed" timeseries ----------------------------------------------- +dir_obs = paste0("./", ewe_name, "/", obs_TS_name, ".csv") +obs.list = f.read_ecosim_timeseries(dir_obs, num_row_header = 4) +for(i in 1:length(obs.list)){assign(names(obs.list)[i],obs.list[[i]])} #make separate dataframe for each list element + +obsB.head <- merge(obsB.head, fg_df, by = "pool_code", all.x = TRUE) +obsC.head <- merge(obsC.head, fg_df, by = "pool_code", all.x = TRUE) + +colnames(obsB) = obsB.head$group_name +colnames(obsC) = obsC.head$group_name + +## ----------------------------------------------------------------------------- +## +## +## + +## ----------------------------------------------------------------------------- +## + +init_years_toscale = 5 + +fit_metrics <- data.frame( + nll_spa_obs = NA, nll_sim_obs = NA, nll_spa_sim = NA, + pb_spa_obs = NA, pb_sim_obs = NA, pb_spa_sim = NA, + mae_spa_obs = NA, mae_sim_obs = NA, mae_spa_sim = NA) + +for(i in 1:num_fg){ + # i = 6 + ## Get biomass for individual FG: Observed, Ecosim, and Ecospace + (grp = fg_df$group_name[i]) + simB = simB_xY[,i] + spaB_ls <- lapply(ls_spaB_xY, function(df) df[, i]) ## Extract the i column from each data frame in the list + + ## Check to see if observed data is available + obsB_scaled=NULL + if(i %in% obsB.head$pool_code){ + obs.idx = which(obsB.head$pool_code==i) + obs_df = suppressWarnings( ## Suppress warnings thrown when obs not available + data.frame(year_series, obsB = as.numeric(obsB[ ,obs.idx])) + ) + non_na_obsB = obs_df$obsB[!is.na(obs_df$obsB)] # Extract non-NA values from obs_df$obsB + if_else (length(non_na_obsB) < init_years_toscale, + years_to_scale <- length(non_na_obsB), + years_to_scale <- init_years_toscale) + mean_init_years = mean(non_na_obsB[1:years_to_scale]) # Calculate the mean of the first 'init_years_toscale' non-NA values + obsB_scaled = obs_df$obsB / mean_init_years # Scale the entire obs_df$obsB by this mean + } else obsB_scaled=rep(NA, length(simB)) + + ## Scale to the average of a given timeframe + simB_scaled = simB / mean(simB[1:init_years_toscale], na.rm = TRUE) ## Ecosim scaled + spaB_scaled_ls = list() ## List of Ecospace scaled + for(j in 1:length(spa_scenarios)){ + spaB <- spaB_ls[[j]] + spaB_scaled <- spaB / mean(spaB[1:init_years_toscale], na.rm = TRUE) + spaB_scaled_ls[[j]] <- spaB_scaled + } + + ## Create data frame to compare observed, Ecosim, and Ecospace + comp_df <- data.frame(obs = obsB_scaled, sim = simB_scaled, spa = spaB_scaled) + + ## Calculate log-liklihood --------------------------------------------------- + # Calculate log-likelihood for spa vs obs + resids <- comp_df$obs - comp_df$spa + nll_spa_obs <- -(-length(comp_df$obs)/2 * log(2*pi*var(resids, na.rm=TRUE)) - 1/(2*var(resids, na.rm=TRUE)) * sum(resids^2, na.rm=TRUE)) + + # Calculate log-likelihood for sim vs obs + resids <- comp_df$obs - comp_df$sim + nll_sim_obs <- -(-length(comp_df$obs)/2 * log(2*pi*var(resids, na.rm=TRUE)) - 1/(2*var(resids, na.rm=TRUE)) * sum(resids^2, na.rm=TRUE)) + + # Calculate log-likelihood for spa vs sim + resids <- comp_df$sim - comp_df$spa + nll_spa_sim <- -(-length(comp_df$sim)/2 * log(2*pi*var(resids, na.rm=TRUE)) - 1/(2*var(resids, na.rm=TRUE)) * sum(resids^2, na.rm=TRUE)) + + ## Calculate percent bias + ## Note: This measure of percent bias aggregates all prediction errors, + ## both positive and negative, into a single number. This can mask the + ## variability of the errors across different observations. + pbi_spa_obs <- 100 * (sum(comp_df$spa - comp_df$obs, na.rm=TRUE) / sum(comp_df$obs,na.rm=TRUE)) + pbi_sim_obs <- 100 * (sum(comp_df$sim - comp_df$obs, na.rm=TRUE) / sum(comp_df$obs,na.rm=TRUE)) + pbi_spa_sim <- 100 * (sum(comp_df$spa - comp_df$sim, na.rm=TRUE) / sum(comp_df$sim,na.rm=TRUE)) + + ## Calculate mean absolute error (MAE) --------------------------------------- + ## Average magnitude of errors between the predictions and observations, + ## treating all errors with equal weight regardless of their size. + mae_spa_obs = mean(abs(comp_df$spa - comp_df$obs), na.rm = TRUE) + mae_sim_obs = mean(abs(comp_df$sim - comp_df$obs), na.rm = TRUE) + mae_spa_sim = mean(abs(comp_df$spa - comp_df$sim), na.rm = TRUE) + + ## Calculate root mean absolute error (RMSE) --------------------------------- + rmse_spa_obs <- sqrt(mean((comp_df$spa - comp_df$obs)^2, na.rm = TRUE)) + rmse_sim_obs <- sqrt(mean((comp_df$sim - comp_df$obs)^2, na.rm = TRUE)) + rmse_spa_sim <- sqrt(mean((comp_df$spa - comp_df$sim)^2, na.rm = TRUE)) + + ## Store calculations + fit <- c(nll_spa_obs, nll_sim_obs, nll_spa_sim, + pbi_spa_obs, pbi_sim_obs, pbi_spa_sim, + mae_spa_obs, mae_sim_obs, mae_spa_sim); fit + + fit_metrics[i,] <- fit +} +rownames(fit_metrics) = fg_df$group_name +fit_metrics = round(fit_metrics, 2) +(fit_sums <- colSums(fit_metrics, na.rm = TRUE)) + + ## + \ No newline at end of file