-
Notifications
You must be signed in to change notification settings - Fork 0
/
mulslice.cpp
801 lines (653 loc) · 28.7 KB
/
mulslice.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
/*
*** mulslice.cpp ***
------------------------------------------------------------------------
Copyright 1998-2012 Earl J. Kirkland
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
---------------------- NO WARRANTY ------------------
THIS PROGRAM IS PROVIDED AS-IS WITH ABSOLUTELY NO WARRANTY
OR GUARANTEE OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL THE AUTHOR BE LIABLE
FOR DAMAGES RESULTING FROM THE USE OR INABILITY TO USE THIS
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH
ANY OTHER PROGRAM).
------------------------------------------------------------------------
mulslic takes one argument that is the number of threads to use in
FFTW. If no argument is prsent then it defaults to NTHREADS_FFTW=4.
ANSI C++ and TIFF version
this version uses FFTW 3 (usually 2x to 3x faster)
FFTW choses an optimum form of the FFT at run time so there
is some variation in execution speed depending on what else
the CPU is doing during this planning stage
see: www.fftw.org
on Windows, file libfftw3f-3.dll must be in the PATH
on Linux build as:
g++ -O -fopenmp -o mulslice mulslice.cpp slicelib.o
floatTIFF.o cfpix.o -lfftw3f_threads -lfftw3f
rewritten in C 26-july-1995 E. Kirkland
in working form 5-Oct-1995 ejk
switch to TIFF file format 5-may-1996 ejk
remove slice expansion (i.e. put in atompot) 4-aug-1996 ejk
add dx,dy to output parameters 19-feb-1997 ejk
remove commas from input formats 11-july-1997 ejk
fixed small problem with anti-aliasing 5-jan-1998 ejk
added astigmatism in pc mode and inc. beam tilt 28-jan-1998 ejk
fixed format of error message 16-feb-1998 ejk
update memory allocation routines 13-nov-1999 ejk
change void main() to int main() for better portability
22-jan-2000 ejk
change data type of nxl,nyl to long32 for compatibility with new
tiffsubs.c 17-jul-2007 ejk
convert to GPL 3-jul-2008 ejk
convert to FFTW 20-mar-2010 ejk
get return value of scanf() to remove warnings from gcc 4.4
and convert to 4 char TAB size formatting 21-mar-2010 ejk
add multithread option for FFTW 28-mar-2010 ejk
add eleapsed time clock (for multithreading) 16-apr-2010 ejk
convert to C++ and floatTIFF.cpp 18-mar-2012 to 15-apr-2012 ejk
convert to cfpix/fftw class from raw fftw 14-oct-2012 to 30-oct-2012 ejk
PIX = final pix for partial coherence mode
WAVE = current specimen transmitted wavefunction
TRANS = single slice transmission function
PROPX,PROPY = propagator function factored as two 1D arrays
TEMP = scratch array
This program calls subroutines from slicelib.cpp,
floatTIFF.cpp
ax,by = unit cell size in x,y
BW = Antialiasing bandwidth limit factor
acmin = minimum illumination angle
acmax = maximum illumination angle
Cs = spherical aberration coefficient
DF0 = defocus (mean value)
SIGMAF = defocus spread (standard deviation)
DFDELT = sampling interval for defocus integration
this file is formatted for a TAB size of 4 characters
*/
#include <stdio.h> /* ANSI C libraries */
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include "cfpix.hpp" /* complex image handler with FFT */
#include "slicelib.hpp" /* misc. routines for multislice */
#include "floatTIFF.hpp" /* file I/O routines in TIFF format */
const float BW= (2.0F/3.0F); /* bandwidth limit */
const double ABERR= 1.0e-4; /* max error for a,b */
const int NSMAX= 1000; /* max number of slices */
const int NLMAX= 52; /* maximum number of layers */
const int NCMAX= 256; /* max characters in file names */
const int NCINMAX= 50; /* max number of characters in stacking spec */
/* default number of threads for FFTW to use - >1 thread doesn't work with 32 bit MSVS 2010*/
const int NTHREADS_FFTW= 4;
int main( int argc, char *argv[ ] )
{
int lstart=0, lpartl=0, lbeams=0;
int ix,iy, nx,ny, nx2, ny2, ixmid,iymid, i, j, islice, nslice,
nacx,nacy, iqx, iqy, ilayer, nlayer, npix, ns, nthreads,
nslic0, nslic1, ndf, idf, nbout, ib, NPARAM, is;
int *layer, *hbeam, *kbeam;
long nbeams, nillum;
float *kx, *ky, *kx2, *ky2, *xpos, *ypos, *cz, *param, *sparam;
float k2, k2max, scale, v0, vz, mm0, wavlen, rx, ry, dx, dy,
ax, by, pi, rmin, rmax, aimin, aimax, x,y,
ax2,by2, rx2,ry2, cztot, ctiltx, ctilty, tctx, tcty,
acmin, acmax, Cs, df, df0, sigmaf, dfdelt, aobj,
qx, qy, qy2, q2, q2min, q2max, sumdf, pdf, k2maxo,
dfa2, dfa2phi, dfa3, dfa3phi, btiltx, btilty;
float tr, ti, wr, wi;
char **filein, fileout[NCMAX], filestart[NCMAX], filebeam[NCMAX];
char *cin, *cin2;
double sum, timer, etime, xdf, chi, chi1, chi2, phi, t;
float **wave0r, **wave0i,
**propxr, **propxi, **propyr, **propyi,
**tempr, **tempi, **pix;
time_t InitTime, EndTime, pt;
FILE *fp1;
cfpix wave, ctemp, *trans; // complex floating point images
floatTIFF myFile;
/* set up symbolic mapping
this must be the same as in parlay */
char cname[] =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
/* find number of threads option */
if( argc < 2 ) nthreads = NTHREADS_FFTW;
else ns = sscanf( argv[1], "%d", &nthreads );
/* ----- echo version date ----- */
printf("mulslice version dated 30-oct-2012 ejk\n");
printf("Copyright (C) 1998-2010 Earl J. Kirkland\n" );
printf( "This program is provided AS-IS with ABSOLUTELY NO WARRANTY\n "
" under the GNU general public license\n\n" );
printf("perform traditional CTEM multislice calculation\n");
printf(" using FFTW with %d thread(s)\n\n", nthreads);
NPARAM = myFile.maxParam();
pi = (float) (4.0 * atan( 1.0 ));
param = (float*) malloc1D( NPARAM, sizeof(float), "param" );
sparam = (float*) malloc1D( NPARAM, sizeof(float), "sparam" );
/* read in the layer stacking sequence and parse it
multiple line continuation is signified with a trailing '-'
a trailing '/echo' displays the results of parsing
*/
cin2 = cin = (char*) malloc( NCINMAX * sizeof( char ) );
if( cin == NULL ) {
printf("cannot allocate stacking sequence storage.\n");
exit(0);
}
for(i=0; i<NCINMAX; i++) cin[i] = 0;
printf("Type in the stacking sequence :\n");
do {
ns = scanf("%s", cin2 );
}while( ( (cin2=strchr(cin,'-')) != NULL )
&& ( strlen(cin) < (NCINMAX-80) ) );
layer = (int*) malloc1D( NSMAX, sizeof(int), "layer" );
if( parlay( cin, layer, NSMAX, NLMAX, &nslice, 1)
< 0 ) exit( 0 );
/* Find total number of layers */
nlayer = 0;
for( i=0; i<nslice; i++)
if( layer[i] > nlayer ) nlayer = layer[i];
nlayer += 1;
/* Get input file name etc. */
printf("\nType in the name of %d atomic potential layers :\n\n",
nlayer);
filein = (char**) malloc2D( nlayer, NCMAX, sizeof(char), "filein" );
for( i=0; i<nlayer; i++) {
printf("Name of file with input atomic potential %c :\n",
cname[i]);
ns = scanf("%s", filein[i] );
}
/* get more file names etc. */
printf("Name of file to get binary output of multislice result:\n");
ns = scanf("%s", fileout );
lpartl = askYN("Do you want to include partial coherence");
if( lpartl == 1 ) {
printf("Illumination angle min, max in mrad:\n");
ns = scanf("%f %f", &acmin, &acmax);
acmin = acmin * 0.001F;
acmax = acmax * 0.001F;
printf("Spherical aberration (in mm.):\n");
ns = scanf("%g", &Cs);
Cs = Cs * 1.0e7F;
printf("Defocus, mean, standard deviation, and"
" sampling size (in Ang.)=\n");
ns = scanf("%f %f %f", &df0, &sigmaf, &dfdelt);
printf("Objective aperture (in mrad) =\n");
ns = scanf("%f", &aobj);
aobj = aobj * 0.001F;
printf( "Magnitude and angle of 2-fold astigmatism"
" (in Ang. and degrees):\n");
ns = scanf( "%f %f", &dfa2, &dfa2phi);
dfa2phi = dfa2phi * pi /180.0F;
printf( "Magnitude and angle of 3-fold astigmatism"
" (in Ang. and degrees):\n");
ns = scanf( "%f %f", &dfa3, &dfa3phi);
dfa3phi = dfa3phi * pi /180.0F;
lstart = 0;
} else {
printf("NOTE, the program image must also be run.\n");
lstart = askYN("Do you want to start from previous result");
}
if ( lstart == 1 ) {
printf("Name of file to start from:\n");
ns = scanf("%s", filestart);
} else {
printf("Incident beam energy in kev:\n");
ns = scanf("%g", &v0);
}
printf("Crystal tilt x,y in mrad.:\n");
ns = scanf("%f %f", &ctiltx, &ctilty);
ctiltx = ctiltx * 0.001F;
ctilty = ctilty * 0.001F;
if( lpartl == 0 ) {
printf("Incident beam tilt x,y in mrad.:\n");
ns = scanf("%f %f", &btiltx, &btilty);
btiltx = btiltx * 0.001F;
btilty = btilty * 0.001F;
lbeams = askYN("Do you want to record the (real,imag) value\n"
" of selected beams vs. thickness");
if( lbeams == 1 ) {
printf("Name of file for beams info:\n");
ns = scanf("%s", filebeam );
printf("Number of beams:\n");
ns = scanf("%d", &nbout);
if( nbout<1 ) nbout = 1;
hbeam = (int*) malloc1D( nbout, sizeof(int), "hbeam" );
kbeam = (int*) malloc1D( nbout, sizeof(int), "kbeam" );
for( ib=0; ib<nbout; ib++) {
printf("Beam %d, h,k=\n", ib+1);
ns = scanf("%d %d", &hbeam[ib], &kbeam[ib] );
}
}
}
timer = cputim(); // get initial CPU time
InitTime = time( &pt ); // get initial wall time (test multithreading)
/* get starting value of transmitted wavefunction if required
(this can only be used in coherent mode)
remember to save params for final output pix */
if ( lstart == 1 ) {
if( myFile.read( filestart ) != 1 ) {
printf("Cannot open input file: %s .\n", filestart );
exit( 0 );
}
if( myFile.getnpix() != 2 ) {
printf("Input file %s must be complex, can't continue.\n",
filestart );
exit( 0 );
}
nx = myFile.nx();
ny = myFile.ny();
wave0r = (float**) malloc2D( nx, ny, sizeof(float), "wave0r" );
nx = nx/2;
wave0i = wave0r + nx;
// save starting pix for later
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++) {
wave0r[ix][iy] = myFile(ix,iy);
wave0i[ix][iy] = myFile(ix+nx,iy);
}
// save parameters to verify successive images are same size etc.
for( i=0; i<NPARAM; i++) sparam[i] = myFile.getParam( i );
ax = sparam[pDX] * nx;
by = sparam[pDY] * ny;
v0 = sparam[pENERGY];
nslic0 = (int) sparam[pNSLICES];
printf("Starting pix range %g to %g real\n"
" %g to %g imag\n",
sparam[pRMIN], sparam[pRMAX], sparam[pIMIN],
sparam[pIMAX] );
printf("Beam voltage = %g kV\n", v0);
printf("Old crystal tilt x,y = %g, %g mrad\n",
1000.*sparam[pXCTILT],
1000.*sparam[pYCTILT]);
} else {
nslic0 = 0;
}
/* calculate relativistic factor and electron wavelength */
mm0 = 1.0F + v0/511.0F;
wavlen = (float) wavelength( v0 );
printf("Wavelength = %f Angstroms\n", wavlen );
/* read in atomic potential and specimen parameters
and calculate specimen transmission function
for a single slice in transr,i */
cz = (float*) malloc1D( nlayer, sizeof(float), "cz" );
trans = (cfpix*) malloc( nlayer* sizeof( cfpix ) ); // ????new cfpix[nlayer];
if( NULL == trans ) {
printf("Cannot allocate transmission function memory\n");
exit( 0 );
}
for( ilayer=0; ilayer<nlayer; ilayer++ ) {
myFile.zeroParam();
if( (is= myFile.read( filein[ilayer] )) != 1){
printf("Cannot read input file %s (status= %d).\n", filein[ilayer], is );
exit(0);
}
nx2 = myFile.nx();
ny2 = myFile.ny();
npix = myFile.getnpix();
for( i=0; i<NPARAM; i++) param[i] = myFile.getParam( i );
trans[ilayer].resize(nx2, ny2 );
if( 0 == ilayer ) trans[ilayer].init( 0, nthreads);
else trans[ilayer].copyInit( trans[0] );
if( npix != 1 ) {
printf("Input potential file %s is not real.\n",
filein[ilayer] );
exit( 0 );
}
cz[ilayer] = param[pC];
printf("layer %c, cz = %f\n", cname[ilayer],
cz[ilayer]);
if ( ( lstart==1 ) || ( ilayer != 0) ) {
if ( (nx!=nx2) || (ny!=ny2) ) {
printf("pix size incompatible.\n");
printf("old size = %d, %d\n", nx,ny);
printf("new size = %d, %d\n", nx2, ny2 );
printf("layer = %1c\n", cname[ilayer]);
exit( 0 );
}
ax2 = param[pDX] * nx;
by2 = param[pDY] * ny;
if( ( fabs( ax-ax2 ) > fabs(ABERR*ax) ) ||
( fabs( by-by2 ) > fabs(ABERR*by) ) ) {
printf("incompatible lattice constants\n");
printf("potential a,b,c = %g, %g, %g\n",
ax2,by2,cz[ilayer] );
printf("starting pix a,b,c = %g, %g\n",
ax,by);
printf(" layer = %1c\n", cname[ilayer] );
exit( 0 );
}
} else {
nx = nx2;
ny = ny2;
ax = param[pDX] * nx;
by = param[pDY] * ny;
}
scale = wavlen * mm0;
for( iy=0; iy<ny; iy++) {
for( ix=0; ix<nx; ix++) {
vz= scale * myFile(ix, iy);
trans[ilayer].re(ix,iy) = (float) cos(vz);
trans[ilayer].im(ix,iy) = (float) sin(vz);
}
}
} /* end for(ilayer=... */
printf("Size in pixels Nx x Ny= %d x %d = %d beams\n",
nx,ny, nx*ny);
printf("Lattice constant a = %12.4f, b = %12.4f\n", ax,by);
/* calculate the total specimen thickness and echo */
cztot = 0.0F;
for( islice=0; islice<nslice; islice++)
cztot += cz[ layer[islice] ];
printf("Total specimen thickness = %g Angstroms\n", cztot);
/* calculate spatial frequencies and positions for future use */
rx = 1.0F/ax;
rx2= rx*rx;
ry = 1.0F/by;
ry2= ry*ry;
ixmid = nx/2;
iymid = ny/2;
kx = (float*) malloc1D( nx, sizeof(float), "kx" );
kx2 = (float*) malloc1D( nx, sizeof(float), "kx2" );
xpos = (float*) malloc1D( nx, sizeof(float), "xpos" );
freqn( kx, kx2, xpos, nx, ax );
ky = (float*) malloc1D( ny, sizeof(float), "ky" );
ky2 = (float*) malloc1D( ny, sizeof(float), "ky2" );
ypos = (float*) malloc1D( ny, sizeof(float), "ypos" );
freqn( ky, ky2, ypos, ny, by );
/* allocate some more arrays and initialize wavefunction */
wave.resize( nx, ny );
wave.copyInit( trans[0] );
if( lstart == 0 ) {
qx = btiltx / wavlen; // add incident beam tilt
qy = btilty / wavlen;
for( ix=0; ix<nx; ix++)
for( iy=0; iy<ny; iy++) {
t = 2.0*pi*( qx*xpos[ix] + qy*ypos[iy] );
wave.re(ix,iy) = (float) cos( t ); // real
wave.im(ix,iy) = (float) sin( t ); // imag
}
} else { // get incident wavefunctions
for( ix=0; ix<nx; ix++)
for( iy=0; iy<ny; iy++) {
wave.re(ix,iy) = wave0r[ix][iy]; // real part
wave.im(ix,iy) = wave0i[ix][iy]; // imag part
}
} // end if( lstart...)
/* calculate propagator function, and bandwidth limit the transmission
function for anti-aliasing.
set to zero outside sampling circle
*/
k2max = nx/(2.0F*ax);
tctx = ny/(2.0F*by);
if( tctx < k2max ) k2max = tctx;
k2max = BW * k2max;
printf("Bandwidth limited to a real space resolution of %f Angstroms\n",
1.0F/k2max);
printf(" (= %.2f mrad) for symmetrical anti-aliasing.\n",
wavlen*k2max*1000.0F);
k2max = k2max*k2max;
tctx = (float) (2.0 * tan(ctiltx));
tcty = (float) (2.0 * tan(ctilty));
propxr = (float**) malloc2D( nlayer, nx, sizeof(float), "propxr" );
propxi = (float**) malloc2D( nlayer, nx, sizeof(float), "propxi" );
propyr = (float**) malloc2D( nlayer, ny, sizeof(float), "propyr" );
propyi = (float**) malloc2D( nlayer, ny, sizeof(float), "propyi" );
for( ilayer=0; ilayer<nlayer; ilayer++) {
scale = pi * cz[ilayer];
nbeams = 0;
for( ix=0; ix<nx; ix++) {
t = scale * ( kx2[ix]*wavlen - kx[ix]*tctx );
propxr[ilayer][ix] = (float) cos(t);
propxi[ilayer][ix] = (float) -sin(t);
}
for( iy=0; iy<ny; iy++) {
t = scale * ( ky2[iy]*wavlen - ky[iy]*tcty );
propyr[ilayer][iy] = (float) cos(t);
propyi[ilayer][iy] = (float) -sin(t);
}
trans[ilayer].fft();
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++) {
k2= ky2[iy] + kx2[ix];
if (k2 < k2max) nbeams++;
else trans[ilayer].re(ix,iy) =
trans[ilayer].im(ix,iy) = 0.0F;
}
trans[ilayer].ifft();
} /* end for(ilayer... */
printf("Number of symmetrical non-aliasing beams = %ld\n", nbeams);
/* iterate the multislice algorithm proper
NOTE: zero freq. is in the bottom left corner and
expande into all other corners - not in the center
this is required for the FFT - don't waste time rearranging
-------- partial coherence method ----------------------------
force the integrals to include the origin and to be symmetric
about the origin and to have the same periodic boundary
conditions as the sampling grid
*/
if( lpartl == 1 ) {
/* for defocus integration */
ctemp.resize(nx,ny);
ctemp.copyInit( trans[0] );
printf("Illumination angle sampling (in mrad) = %f, %f\n\n",
1000.*rx*wavlen, 1000.*ry*wavlen);
pix = (float**) malloc2D( nx, ny, sizeof(float), "pix" );
for( ix=0; ix<nx; ix++)
for( iy=0; iy<ny; iy++) pix[ix][iy] = 0.0F;
tempr = (float**) malloc2D( nx, ny, sizeof(float), "tempr" );
tempi = (float**) malloc2D( nx, ny, sizeof(float), "tempi" );
scale = 1.0F / ( ((float)nx) * ((float)ny) );
ndf = (int) ( ( 2.5F * sigmaf ) / dfdelt );
nacx = (int) ( ( acmax / ( wavlen * rx ) ) + 1.5F );
nacy = (int) ( ( acmax / ( wavlen * ry ) ) + 1.5F );
q2max = acmax / wavlen;
q2max = q2max*q2max;
q2min = acmin / wavlen;
q2min = q2min*q2min;
k2maxo = aobj / wavlen;
k2maxo = k2maxo*k2maxo;
chi1 = pi * wavlen;
chi2 = 0.5 * Cs * wavlen *wavlen;
nillum = 0;
/* integrate over the illumination angles */
for( iqy= -nacy; iqy<=nacy; iqy++) {
qy = iqy * ry;
qy2 = qy * qy;
for( iqx= -nacx; iqx<=nacx; iqx++) {
qx = iqx * rx;
q2 = qx*qx + qy2;
if( (q2 <= q2max) && (q2 >= q2min) ) {
nillum += 1;
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++) {
t = 2.0*pi*( qx*xpos[ix] + qy*ypos[iy] );
wave.re(ix,iy) = (float) cos(t); // real
wave.im(ix,iy) = (float) sin(t); // imag
}
for( islice=0; islice<nslice; islice++) {
ilayer = layer[islice];
wave *= trans[ilayer]; // transmit
wave.fft();
propagate( wave,
propxr[ilayer], propxi[ilayer],
propyr[ilayer], propyi[ilayer],
kx2, ky2, k2max, nx, ny );
wave.ifft();
}
sum = 0.0;
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++)
sum += wave.re(ix,iy)*wave.re(ix,iy)
+ wave.im(ix,iy)*wave.im(ix,iy);
sum = sum * scale;
printf("Illum. angle = %7.3f, %7.3f mrad",
1000.*qx*wavlen, 1000.*qy*wavlen);
printf(", total intensity= %f\n", sum );
/* integrate over +/- 2.5 sigma of defocus */
wave.fft();
sumdf = 0.0F;
for( idf= -ndf; idf<=ndf; idf++) {
df = df0 + idf*dfdelt;
for( ix=0; ix<nx; ix++)
for( iy=0; iy<ny; iy++) {
k2 = kx2[ix] + ky2[iy];
if( k2 <= k2maxo ) {
phi = atan2( ky[iy], kx[ix] );
chi = chi1*k2* ( chi2*k2 - df
+ dfa2*sin( 2.0*(phi-dfa2phi) )
+ 2.0F*dfa3*wavlen*sqrt(k2)*
sin( 3.0*(phi-dfa3phi) )/3.0 );
tr = (float) cos(chi);
ti = (float) -sin(chi);
wr = wave.re(ix,iy); // real
wi = wave.im(ix,iy); // imag
ctemp.re(ix,iy) = wr*tr - wi*ti;
ctemp.im(ix,iy) = wr*ti + wi*tr;
} else {
ctemp.re(ix,iy) = 0.0F;
ctemp.im(ix,iy) = 0.0F;
}
} /* end for( iy=...) */
ctemp.ifft();
xdf = (double) ( (df - df0) /sigmaf );
pdf = (float) exp( -0.5F * xdf*xdf );
sumdf += pdf;
for( ix=0; ix<nx; ix++) {
j = ix*ny;
for( iy=0; iy<ny; iy++) {
x = ctemp.re(ix,iy); // real
y = ctemp.im(ix,iy); // imag
pix[ix][iy] += pdf* ( x*x + y*y );
}
}
}/* end for(idf..) */
}/* end if( q2...) */
} /* end for( iqx..) */
} /* end for( iqy..) */
printf("Total number of illumination angle = %ld\n",
nillum);
printf("Total number of defocus values = %d\n", 2*ndf+1);
scale = 1.0F / ( ((float)nillum) * sumdf );
rmin = pix[0][0] * scale;
rmax = rmin;
aimin = 0.0F;
aimax = 0.0F;
for( ix=0; ix<nx; ix++)
for( iy=0; iy<ny; iy++) {
pix[ix][iy] = pix[ix][iy] * scale;
if( pix[ix][iy] < rmin ) rmin = pix[ix][iy];
if( pix[ix][iy] > rmax ) rmax = pix[ix][iy];
}
/* ------------------- coherent method --------------------
remember that wave was initialized above */
} else {
if( lbeams == 1 ) {
fp1 = fopen( filebeam, "w" );
if( fp1==NULL) {
printf("can't open file %s\n", filebeam);
exit(0);
}
fprintf( fp1, " (h,k) = " );
for(ib=0; ib<nbout; ib++)
fprintf(fp1," (%d,%d)", hbeam[ib], kbeam[ib]);
fprintf( fp1, "\n" );
fprintf( fp1, "nslice, (real,imag) (real,imag) ...\n\n");
for( ib=0; ib<nbout; ib++) {
if( hbeam[ib] < 0 ) hbeam[ib] = nx + hbeam[ib];
if( kbeam[ib] < 0 ) kbeam[ib] = ny + kbeam[ib];
if( hbeam[ib] < 0 ) hbeam[ib] = 0;
if( kbeam[ib] < 0 ) kbeam[ib] = 0;
if( hbeam[ib] > nx-1 ) hbeam[ib] = nx-1;
if( kbeam[ib] > ny-1 ) kbeam[ib] = ny-1;
}
} /* end if( lbeams..) */
nslic1 = nslic0;
scale = 1.0F / ( ((float)nx) * ((float)ny) );
for( islice=0; islice<nslice; islice++ ) {
ilayer =layer[islice];
wave *= trans[ilayer]; // transmit
wave.fft();
// remember: prop must be here to anti-alias
propagate( wave,
propxr[ilayer], propxi[ilayer],
propyr[ilayer], propyi[ilayer],
kx2, ky2, k2max, nx, ny );
if( lbeams == 1 ) {
fprintf( fp1, "%5d", nslic0+1);
for( ib=0; ib<nbout; ib++)
fprintf(fp1, "%10.6f %10.6f",
scale*wave.re(hbeam[ib],kbeam[ib]),
scale*wave.im(hbeam[ib],kbeam[ib]) );
fprintf( fp1, "\n");
}
wave.ifft();
sum = 0.0;
for( ix=0; ix<nx; ix++) {
for( iy=0; iy<ny; iy++)
sum += wave.re(ix,iy)*wave.re(ix,iy)
+ wave.im(ix,iy)*wave.im(ix,iy);
}
sum = sum * scale;
nslic0 += 1;
printf("slice %4d, layer = %c, integrated intensity = %f\n",
nslic0, cname[ilayer], sum );
} /* end for(islice...) */
wave.findRange( rmin, rmax, aimin, aimax );
} /* end else .. coherent section */
/* output results and find min and max to echo */
if( lstart == 1 )
for( ix=0; ix<NPARAM; ix++ ) myFile.setParam( ix, sparam[ix]);
else
for( ix=0; ix<NPARAM; ix++ ) myFile.setParam( ix, 0.0F);
myFile.setParam( pRMAX, rmax);
myFile.setParam( pIMAX, aimax);
myFile.setParam( pRMIN, rmin);
myFile.setParam( pIMIN, aimin);
myFile.setParam( pXCTILT, ctiltx);
myFile.setParam( pYCTILT, ctilty);
myFile.setParam( pENERGY, v0);
myFile.setParam( pDX, dx = (float) ( ax/((float)nx) ) );
myFile.setParam( pDY, dy = (float) ( by/((float)ny) ) );
myFile.setParam( pWAVEL, wavlen );
myFile.setParam( pNSLICES, (float) nslic0 );
if ( lpartl == 1 ) {
myFile.setParam( pDEFOCUS, df0 );
myFile.setParam( pOAPERT, aobj );
myFile.setParam( pCS, Cs );
myFile.setParam( pCAPERT, acmax );
myFile.setParam( pDDF, sigmaf );
}
if ( lpartl == 1 ) {
myFile.resize( nx, ny );
myFile.setnpix( 1 );
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++)
myFile(ix,iy) = pix[ix][iy];
i = myFile.write( fileout, rmin, rmax, aimin, aimax, dx, dy );
} else {
printf( "make output pix %d x %d\n", nx, ny );
myFile.resize( 2*nx, ny );
myFile.setnpix( 2 );
for( ix=0; ix<nx; ix++) for( iy=0; iy<ny; iy++) {
myFile(ix,iy) = wave.re(ix,iy);
myFile(ix+nx,iy) = wave.im(ix,iy);
}
i = myFile.write( fileout, rmin, rmax, aimin, aimax, dx, dy );
}
if( i != 1 ) printf( "mulslice cannot write TIF file %s\n",
fileout );
printf( "pix range %g to %g real,\n"
" %g to %g imag\n", rmin,rmax,aimin,aimax );
/* include all CPU's */
printf("Total CPU time = %f sec.\n", cputim()-timer );
EndTime = time( &pt );
etime = difftime( EndTime, InitTime );
printf("elapsed time = %g sec.\n", etime );
return EXIT_SUCCESS;
} /* end main() */