forked from cenobitedk/esphome_multical402
-
Notifications
You must be signed in to change notification settings - Fork 2
/
kmp.h
303 lines (265 loc) · 7.91 KB
/
kmp.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
// 151023 htvekov
// Revised default register value (rval) from 0 to -1
// This to ensure register 0x004A water flow with value 0 to be updated as sensor in HA
//
// Added register 0x009B - HiRes Energy register (kWh with two decimals precision)
// HiRes register can be read on the Multical 602 module. Unfortunately there's no reply on Multical 403 modules
// How to activate and reset the Hires register is currently unknown
// Once started, register will act as a total increasing register and continue to provide values in 10mWh units
// Delta_base will have to be calculated as difference between register 0x003C and 0x009B (converted to MWh)
// Delta_base can then be added to register 0x009B to provide a HiRes sensor output in MWh with resolution of 0.01 kWh
//
#ifndef _KMP_
#define _KMP_
#include "esphome.h"
// Kamstrup timeout after transmit
const unsigned char TIMEOUT = 250;
enum DestinationAddress : unsigned char
{
HEAT_METER = 0x3f,
LOGGER_TOP = 0x7f,
LOGGER_BASE = 0xbf,
};
// Kamstrup Multical 402/403/602
// The registers we want to get out of the meter
const unsigned int registerIds[] = {
0x003C, // 60 - Heat energy - Standard resolution (1 kWh)
0x0050, // 80 - Current power
0x0056, // 86 - Current forward temperature
0x0057, // 87 - Current return temperature
0x0059, // 89 - Current differential temperature
0x004A, // 74 - Current water flow
0x0044, // 68 - Volume register V1
0x010A, // 266 - Heat energy - Multical 403 High resolution (1 Wh)
0x009B // 155 - Heat energy - Multical 602 High resolution (0.01 kWh)
// 0x03EA, // XXXX - Time
// 0x03EB, // XXXX - Date
// 0x03E9 // XXXX - Serial number
};
// The name of the registers we want to get out of the meter in the same order as above
const char *kregstrings[] = {
"Energy",
"Current Power",
"Temperature t1",
"Temperature t2",
"Temperature diff",
"Flow",
"Volume",
"Energy_hires_0403",
"Energy_high"};
static const char *TAG = "Multical402";
class KMP
{
public:
KMP(UARTComponent *uart_bus)
{
_uart = new UARTDevice(uart_bus);
}
float HeatEnergy()
{
return KMP::Read(registerIds[0]);
}
float CurrentPower()
{
return KMP::Read(registerIds[1]);
}
float CurrentForwardTemperature()
{
return KMP::Read(registerIds[2]);
}
float CurrentReturnTemperature()
{
return KMP::Read(registerIds[3]);
}
float CurrentDifferentialTemperature()
{
return KMP::Read(registerIds[4]);
}
float CurrentWaterFlow()
{
return KMP::Read(registerIds[5]);
}
float Volume()
{
return KMP::Read(registerIds[6]);
}
float HeatEnergy_hires_403()
{
return KMP::Read(registerIds[7]);
}
float HeatEnergy_high()
{
return KMP::Read(registerIds[8]);
}
private:
UARTDevice *_uart;
// kamReadReg - read a Kamstrup register
float Read(unsigned int registerId)
{
char recvmsg[40]; // buffer of bytes to hold the received data
float rval = -1; // this will hold the final value
// prepare message to send and send it
char sendmsg[] = {HEAT_METER, 0x10, 0x01,
static_cast<char>(registerId >> 8),
static_cast<char>(registerId & 0xff)};
KMP::Send(sendmsg, 5);
// listen if we get an answer
unsigned short rxnum = KMP::Receive(recvmsg);
// check if number of received bytes > 0
if (rxnum != 0)
{
// decode the received message
rval = KMP::Decode(registerId, recvmsg);
}
return rval;
}
// kamSend - send data to Kamstrup meter
void Send(char const *msg, int msgsize)
{
// append checksum bytes to message
char newmsg[msgsize + 2];
for (int i = 0; i < msgsize; i++)
{
newmsg[i] = msg[i];
}
newmsg[msgsize++] = 0x00;
newmsg[msgsize++] = 0x00;
int c = crc_1021(newmsg, msgsize);
newmsg[msgsize - 2] = (c >> 8);
newmsg[msgsize - 1] = c & 0xff;
// build final transmit message - escape various bytes
unsigned char txmsg[20] = {0x80}; // prefix
unsigned int txsize = 1;
for (int i = 0; i < msgsize; i++)
{
if (newmsg[i] == 0x06 or newmsg[i] == 0x0d or newmsg[i] == 0x1b or newmsg[i] == 0x40 or newmsg[i] == 0x80)
{
txmsg[txsize++] = 0x1b;
txmsg[txsize++] = newmsg[i] ^ 0xff;
}
else
{
txmsg[txsize++] = newmsg[i];
}
}
txmsg[txsize++] = 0x0d; // EOL
// send to serial interface
_uart->write_array(txmsg, txsize);
}
// kamReceive - receive bytes from Kamstrup meter
unsigned short Receive(char recvmsg[])
{
char rxdata[50]; // buffer to hold received data
unsigned long rxindex = 0;
unsigned long starttime = millis();
_uart->flush(); // flush serial buffer - might contain noise
char r = 0;
// loop until EOL received or timeout
while (r != 0x0d)
{
// handle rx timeout
if (millis() - starttime > TIMEOUT)
{
ESP_LOGW(TAG, "Timed out listening for data");
return 0;
}
// handle incoming data
if (_uart->available())
{
// receive byte
r = _uart->read();
if (r != 0x40)
{ // don't append if we see the start marker
// append data
rxdata[rxindex] = r;
rxindex++;
}
}
}
// remove escape markers from received data
unsigned short j = 0;
for (unsigned short i = 0; i < rxindex - 1; i++)
{
if (rxdata[i] == 0x1b)
{
char v = rxdata[i + 1] ^ 0xff;
if (v != 0x06 and v != 0x0d and v != 0x1b and v != 0x40 and v != 0x80)
{
ESP_LOGW(TAG, "Missing escape %X", v);
}
recvmsg[j] = v;
i++; // skip
}
else
{
recvmsg[j] = rxdata[i];
}
j++;
}
// check CRC
if (crc_1021(recvmsg, j))
{
ESP_LOGW(TAG, "CRC error: ");
return 0;
}
return j;
}
// kamDecode - decodes received data
float Decode(const unsigned int registerId, const char *msg)
{
// skip if message is not valid
if (msg[0] != 0x3f or msg[1] != 0x10)
{
return false;
}
if (msg[2] != (registerId >> 8) or msg[3] != (registerId & 0xff))
{
return false;
}
// decode the mantissa
long x = 0;
for (int i = 0; i < msg[5]; i++)
{
x <<= 8;
x |= msg[i + 7];
}
// decode the exponent
int i = msg[6] & 0x3f;
if (msg[6] & 0x40)
{
i = -i;
};
float ifl = pow(10, i);
if (msg[6] & 0x80)
{
ifl = -ifl;
}
// return final value
return (float)(x * ifl);
}
// crc_1021 - calculate crc16
long crc_1021(char const *inmsg, unsigned int len)
{
long creg = 0x0000;
for (unsigned int i = 0; i < len; i++)
{
int mask = 0x80;
while (mask > 0)
{
creg <<= 1;
if (inmsg[i] & mask)
{
creg |= 1;
}
mask >>= 1;
if (creg & 0x10000)
{
creg &= 0xffff;
creg ^= 0x1021;
}
}
}
return creg;
}
};
#endif