
© Hitachi America, Ltd. 2020. All rights reserved.0

Operations Smart Contract (OpsSC) for Hyperledger Fabric v2.x:
Smart contract-based system operations for blockchain-based systems

Financial Innovation Lab, R&D Division, Hitachi America, Ltd.
Tatsuya Sato and Taku Shimosawa

© Hitachi America, Ltd. 2020. All rights reserved.1

Summary

• Operations Smart Contract (OpsSC)

– Goal: Establishing decentralized system operations across multiple organizations for
blockchain-based systems

– Idea: Define a system operational workflow as a smart contract, each organization
(admin / agent program) operates their own nodes according to the smart contract

– Value: inter-organizational operations can be performed
(1) without relying on decisions by a specific organization
(2) with uniform procedure / configuration parameters
(3) efficiently

• We have developed OpsSC for Hyperledger Fabric v2.x

– This helps make typical end-to-end operational workflows more efficient

• Currently, for typical chaincode ops (deploying etc.) and channel ops (adding orgs etc.)

– This is available on https://github.com/satota2/fabric-opssc

– We would like to start this as a “hyperledger-labs” project

https://github.com/satota2/fabric-opssc

© Hitachi America, Ltd. 2020. All rights reserved.2

Concept of OpsSC (for blockchain-based system in general)

(*) [1] https://ieeexplore.ieee.org/abstract/document/8328745

[2] https://arxiv.org/abs/1901.11249

[1] Smart-Contract Based System Operations for Permissioned Blockchain, BSC 2018, p.6

[2] Design and Evaluation of Smart-Contract-based System Operations for Permissioned
Blockchain-based Systems, arXiv:1901.11249, p.11, 2019

https://ieeexplore.ieee.org/abstract/document/8328745
https://arxiv.org/abs/1901.11249

© Hitachi America, Ltd. 2020. All rights reserved.3

Background

• Toward production uses, system operations become more important

– e.g., Upgrading a SC and the applications, taking snapshot of ledger data

• Target: Blockchain-based system built across multiple management domains

Network

SC

Organization A

SC

Organization C

SC

Organization B

Consensus

DC1 DC2 DC3

Consensus

Org. A’s

Node
Org. C’s

Node

Org. B’s

Node

(*) BC: Blockchain, SC: Smart Contract, DC: Data Center

: need to collaborate with other organizations
• Problem: Difficult to execute inter-organizational system operations

e.g., Deploy the same SC in the same period

Each domain
has separated
admins

A B C
Admin

© Hitachi America, Ltd. 2020. All rights reserved.4

Problems about the system operations for BC-based systems

Conventional operation management tools (e.g., Job mgmt. servers, IaC tools):
- Enable admins to do general (= single-organizational) operations efficiently

But do not cover with inter-organizational operations

Org A Org COrg B

CA B

Admin

Gap of operations

(procedures, triggers,

config parameters)

SC

v2.2
SC

v2.1Way 1:

A single admin

operates all nodes

Way 2:
Each org’s admin operates
their own nodes

(*) IaC: Infrastructure as Code

Problem 2:
Different configs may prevent the system
from working

Problem 1:
- The admin is SPOT (Single Point of Trust)
- Cannot access to nodes owned by other

orgs because of lack of permissions

Node

NO

Permission

How to do

inter-org ops

© Hitachi America, Ltd. 2020. All rights reserved.5

Smart contract-based system operations method

To define system operational flow as a SC
- Cross-domain operations w/o SPOT and sharing credentials by BC consensus
- Unified procedures with unified config parameters based on SC

Network

Org A Org C

OpsSC

Org B

OpsSCOpsSC

0. Invoke TX

of OpsSC

2. Share parameters,
Control workflows
over SC

1. Establish
consensus

1. Establish
consensus

3. Execute

operations

based on SC

3. Execute

operations

Unified operations
(e.g., SC based
unified backup)

3.

Snapshot()
- Cmds: [“zip /ledger…”…
- Timing: “every 23:55”
…

(*) SC: Smart Contract, TX: Transaction,

SPOT: Single Point of Trust

Node

© Hitachi America, Ltd. 2020. All rights reserved.6

OpsSC for Hyperledger Fabric v2.x

© Hitachi America, Ltd. 2020. All rights reserved.7

For Hyperledger Fabric v2.x

• Current status of Hyperledger Fabric v2.x

– Individual operational tasks (e.g., peer commands) has been refined,
and SPOT is eliminated (e.g., introduced the new chaincode lifecycle from v2.0)

• Remaining issue: Efficient end-to-end operational workflows using the individual tasks

– Increased tasks which are executed by each org and must use the same parameters

• The OpsSC for Fabric v2.x: aims to enhance negotiation and automation capabilities

Fabric commandsConfig parameters Nodes

Negotiation Automation
(Decentralized)

Admins

Target area
of OpsSC

e.g., Chaincode deployment:
- Each organization must approve the chaincode definition with the same parameters as the other organizations
- Organizations need to share and coordinate the source code and parameters on the chaincode offline with

other organizations (in typical cases)

(*) SPOT: Single Point of Trust

© Hitachi America, Ltd. 2020. All rights reserved.8

Related Activities

• System chaincode [1]

– Special chaincode which runs within the peer process and it is currently used for
internal processing and configuration-value sharing on the Fabric platform
(e.g., _lifecycle to manage chaincode lifecycle, CSCC to handle changes to a channel config)

– Our OpsSC internally uses system chaincodes to operate the Fabric network

• Fabric Interop Working Group [2]

– Purpose: To promote the interoperability of Fabric network service

• Focusing on a scenario that new organization joins a running Fabric network

– Approach: Create artifacts for the join request (= configtx) with
“Consortium Management Chaincode (CMCC)”

– The concept is very similar with ours although the scope is slightly different

• In fact, current OpsSC for channel ops. reuses part of the CMCC implementation

– Our OpsSC could be positioned as a form or application of the CMCC

[1] https://hyperledger-fabric.readthedocs.io/en/release-2.2/smartcontract/smartcontract.html#system-chaincode
[2] https://wiki.hyperledger.org/display/fabric/Fabric+Interop+Working+Group

© Hitachi America, Ltd. 2020. All rights reserved.9

Implementation of OpsSC for Hyperledger Fabric v2.x

• Consist of 3 components: OpsSC chaincode, OpsSC API server and OpsSC Agent

– Chaincode provides functions to manage operational workflows and issues chaincode events
including the operational instructions

– API server provides REST API for each org's admin to interact with the OpsSC chaincodes

– Agent for each org executes operations based on the chaincode events to ALL nodes for the org

Peer

OrdererOpsSC
Agent

OpsSC chaincodes

Channel Operations
(channel_ops)

Chaincode Operations
(chaincode_ops)

Org1

Org2

OpsSC
API/Portal

OpsSC
API/Portal

Org3

OpsSC
API/Portal

1. Propose ops

2. Vote for proposal
Peer

OrdererOpsSC
Agent

Peer

OrdererOpsSC
Agent3. Check the num of votes

5. Execute ops
based on event

4. Issue
chaincode
event

5. Execute ops

5. Execute ops

Ph.1: Provide a purpose-specific OpsSC which is essential for managing
the Fabric network (for operating chaincodes and channels)

© Hitachi America, Ltd. 2020. All rights reserved.10

OpsSC for operating chaincodes

1. Install

1. Install

1. Install

2. Approve

Org1:

Org2:

Org3: 3. Commit

2. Approve

2. Approve

Check number
of approvals

New Chaincode Lifecycle from v2.0

• Deploy in 3 phases: Install, Approve, Commit

– Eliminated centralized process

CC source code CC definition
(e.g., policy)

PeerAgentOpsSC
chaincodes

Chaincode
Operations

(chaincode_ops)

Org1

Org2

API/Portal

API/Portal

Org3

API/Portal

1. Propose

2. Vote for proposal

PeerAgent

OpsSC for operating chaincodes

3. Download, Install, Approve,
Commit chaincode

3. Download, Install, Approve

3. Download, Install, Approve

PeerAgent

Proposal

1. An org creates a proposal with CC source code and definition

2. Other orgs vote for the proposal shared on the OpsSC

3. When the majority of votes is collected, each agent
automatically deploys the chaincode based on the proposal

(*) CC: Chaincode

Increase operations which are executed by
each org and must use the same parameters

Need to share and negotiate the source code and
parameters with the other orgs (in typical case)

Remaining Issue:

Remaining Issue:

• Streamline end-to-end chaincode deployment

© Hitachi America, Ltd. 2020. All rights reserved.11

OpsSC for operating channels

1. Fetch block

3. Sign

Org1:

Org2:

Org3: 4. Update

3. Sign the ConfigUpdate

Check number
of signatures

2. Create ConfigUpdate

Share with other orgsconfigtx

Share with other orgs

• e.g., create a channel, add an org / orderer

• Process: create configtx, collect signatures
from each org and send the configtx to nodes

Process for channel updates across orgs OpsSC for operating channels

protobuf->JSON->modified JSON
->protobuf->extracted delta

Need to share configtx with the other orgs

Remaining Issue:

• Streamline only channel updates across multiple orgs

Orderer
AgentOpsSC

chaincodes

Channel
Operations

(channel_ops)

Org1

Org2

API/Portal

API/Portal

Org3

API/Portal

1. Propose

2. Vote for proposal
Peer

Agent

3. Update channel

Peer
Agent

1. An org creates a human-readable channel update proposal

2. Other orgs vote for the proposal shared on the OpsSC

(Internally convert to configtx with Config Transaction Library)

3. When the majority of votes are collected, one of the agents
automatically updates the channel with the proposed configtx

Peer

Orderer

Orderer

© Hitachi America, Ltd. 2020. All rights reserved.12

Org4Org3Org2Org1

Demo: Add a new chaincode, add a new organization using OpsSC

[Demo environment]

- Fabric version: v2.3.0

- Fabric network: test-network in fabric-samples (including some customizations)

- Initial network: 3 orgs (all orgs have their CA, peer, orderer), and mychannel

- OpsSC chaincodes has been deployed on ops-channel

ops-channel

OpsSC chaincode for operating channels (channel_ops)

OpsSC chaincode for operating chaincodes (chaincode_ops)

mychannel

fabcar

[Scenario 1. Add a new CC]

Steps:

1. Org1 proposes fabcar

2. Others votes for it

Result:

fabcar with the proposed
parameters is deployed

[Scenario 2. Add a new org]

Steps:

1. Org4 prepares a CA and issues
certs/keys for peers and orderers

2. Org1 proposes adding Org4
(with Org4’s MSP)

3. Org2, 3 votes for it

(2, 3 are required for each channel)

4. Org4 launches other components
(Need to get genesis from others)

Result:

Org4 is added to all channels

- OpsSC and fabcar are deployed

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

Peer

Orderer

CA

Ops API server

Ops Agent

© Hitachi America, Ltd. 2020. All rights reserved.14

Plans

• Development

– General operations support

• Execute arbitrary command via OpsSC chaincode

– v2.3.x new feature support

• e.g., Channel participation without system channel

– etc.

• Community contribution

– We would like to start this as a “hyperledger-labs” project.

• We are looking for a sponsor who could help us open a repository in the labs!!

– In the future, I would like to make this a subproject of Fabric.
(depends on demand and acceptance)

© Hitachi America, Ltd. 2020. All rights reserved.15

