-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_flops.py
509 lines (458 loc) · 25.3 KB
/
test_flops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import argparse
# import json
# import os
# from pathlib import Path
# from threading import Thread
# import numpy as np
import torch
# import yaml
# from tqdm import tqdm
from models.experimental import attempt_load
# from utils.datasets import create_dataloader, create_dataloader_sr
from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
box_iou, non_max_suppression,weighted_boxes, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
# from utils.metrics import ap_per_class, ConfusionMatrix
from utils.plots import plot_images, output_to_target, plot_study_txt, ploy_weights, k_means_cpu
from utils.torch_utils import select_device, time_synchronized
import torch.nn as nn
# from torchvision import transforms
# from PIL import Image
# unloader = transforms.ToPILImage()
# def tensor_to_PIL(tensor):
# image = tensor.cpu().clone()
# image = image.squeeze(0)
# image = unloader(image)
# image.save('a.png')
# return image
def test(#data,
weights=None,
batch_size=32,
imgsz=640,
input_mode = None,
# conf_thres=0.001,
# iou_thres=0.6, # for NMS
# save_json=False,
# single_cls=False,
# augment=False,
# verbose=False,
model=None,
# dataloader=None,
# save_dir=Path(''), # for saving images
# save_txt=False, # for auto-labelling
# save_hybrid=False, # for hybrid auto-labelling
# save_conf=False, # save auto-label confidences
# plots=False,
# wandb_logger=None,
# compute_loss=None,
# is_coco=False
):
# Initialize/load model and set device
training = model is not None
if training: # called by train.py
device = next(model.parameters()).device # get model device
else: # called directly
# set_logging()
device = select_device(opt.device, batch_size=batch_size)
# Directories
# save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
# (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
#zjq
# print(model)
print(model.yaml_file)
# print(model)
############ the code for calculating the params and flops ############
weights_full_precision = opt.full_weights
model_full = attempt_load(weights_full_precision, map_location=device)
import thop
from utils.thop import profile
input_image_size = opt.img_size
input_image = torch.randn(1, 3, input_image_size, input_image_size).to(device)
flops, params,ops_list, params_list,ops_list_,params_list_ = profile(model_full, inputs=(input_image,input_image,opt.input_mode,False), verbose=False) #ops_list,params_list for convolution
print('Params: %.4fM'%(params/1e6))
print('FLOPs: %.2fG'%(flops/1e9))
module_name = []
conv_layer = 0
for idx,(name,m) in enumerate(model_full.named_modules()):
# print(idx,name)
if isinstance(m,nn.Conv2d) and "model_up" not in name:
conv_layer += 1
module_name.append(int(name.split('.')[1]))
########################################################################
if opt.bit_width:
bit_width = [opt.bit_width]*conv_layer
else:
bit_width = []
for idx,(name,m) in enumerate(model.named_modules()): #k t
if 'conv.weight_function' in name:
# print(name)
bit_width.append(m.w_bit)
print(len(bit_width), name, m.w_bit)
# print(m.w_bit)
# print(bit_width)
##########################################################333
# from torchsummaryX import summary
# print(summary(model, input_image,input_image,input_mode))
# model=torch.jit.trace(model,(input_image,input_image)).eval()
# print(model)
# print('Layers: %.0f'%(len(list(model.modules()))))
# def constructor(input_res):
# input_image = torch.randn(1, *input_res).to(device)
# #input_image = torch.ones(()).new_empty((1, *input_res)).cuda()
# inputs={'x':input_image,'ir':input_image}
# return inputs
# from ptflops import get_model_complexity_info
# flops, params = get_model_complexity_info(model, (3, input_image_size, input_image_size),input_constructor=constructor, as_strings=True,print_per_layer_stat=False)
# print("%s |%s " % (flops,params))
# gs = max(int(model.stride.max()), 32) # grid size (max stride)
# imgsz = check_img_size(imgsz, s=gs) # check img_size
# n_bit = 2
# ploy_weights(model)
########## the code for plot ###########
# conv_idx = 0
# for idx,(name,m) in enumerate(model.named_modules()):
# # print(idx,name)
# if isinstance(m,nn.Conv2d):
# print(conv_idx,name)
# w = m.weight.data
# print(w.shape)
# if w.shape[-1]==1:
# conv_idx +=1
# continue
# # feature_cluster(w,"kmeans_{}.png".format(n_bit))
# print("weight max:", w.max(), "weight min:",w.min())
# if conv_idx ==0 or conv_idx ==6 or conv_idx ==27 or conv_idx ==26 or conv_idx ==52 or conv_idx ==53:
# for n_bit in [2,3,4,5]:
# centroids, labels = k_means_cpu(w.cpu().numpy(), n_bit,"kmeans_{}_{}.png".format(conv_idx,n_bit),plot_flag=True)
# if conv_idx > 61:
# break
# conv_idx +=1
#######################################################################
# ########## the code for calculating the bit width#############
The_last_ = params_list.index(0)-1
if not bit_width:
bit_width = []
conv_idx = 0
for idx,(name,m) in enumerate(model.named_modules()):
# print(idx,name)
if isinstance(m,nn.Conv2d):
# print(conv_idx,name)
w = m.weight.data
# print(w.shape)
# print("weight max:", w.max(), "weight min:",w.min())
for n_bit in [2,3,4,5,6,7,8]:
inertia_distance = k_means_cpu(w.cpu().numpy(), 2 ** n_bit,plot_flag=False)
print(n_bit,inertia_distance)
if inertia_distance < opt.inter_threshold:
bit_width.append(n_bit)
break
elif n_bit==8:
bit_width.append(n_bit)
if conv_idx > module_name.index(max(module_name))-2: #The quantization network not includes SR branch and detector
break
conv_idx +=1
# bit_width = [8]*47
#####################################################################
# bit_width = [32]*48
quan_conv_params, quan_conv_BOPs = 0, 0
if model.yaml_file=='SRyolo_noFocus_small.yaml':
The_last_ = params_list.index(0)-1
else:
The_last_ = params_list.index(0)-3
for i in range(The_last_):
print(ops_list[i])
quan_conv_params += params_list[i]*bit_width[i]/8
if i==0:
quan_conv_BOPs += ops_list[i]*bit_width[i]*32
else:
quan_conv_BOPs += ops_list[i]*bit_width[i]*bit_width[i-1]
if model.yaml_file=='SRyolo_noFocus_small.yaml':
quan_conv_params += params_list[The_last_]*32/8
quan_conv_BOPs += ops_list[The_last_]*32*32
else:
quan_conv_params += params_list[The_last_-2]*32/8+params_list[The_last_-1]*32/8+params_list[The_last_]*32/8
quan_conv_BOPs += ops_list[The_last_-2]*32*32+ops_list[The_last_-1]*32*32+ops_list[The_last_]*32*32
# quan_params = sum(params_list_) + quan_conv_params
# quan_BOPs = sum(ops_list_) + quan_conv_BOPs
print('Quantization Params: %.4fMB'%(quan_conv_params/1e6))
print('Quantization BOPs: %.2fG'%(quan_conv_BOPs/1e9))
# print('Quantization Params1: %.4fMB'%(quan_params/1e6))
# print('Quantization BOPs1: %.2fG'%(quan_BOPs/1e9))
####################################################################
print("the bit width is defined as",bit_width)
# Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
# if device.type != 'cpu' and torch.cuda.device_count() > 1:
# model = nn.DataParallel(model)
# Half
# half = device.type != 'cpu' # half precision only supported on CUDA
# if half:
# model.half().float()
# Configure
# model.eval()
# if isinstance(data, str):
# is_coco = data.endswith('coco.yaml')
# with open(data) as f:
# data = yaml.load(f, Loader=yaml.SafeLoader)
# check_dataset(data) # check
# nc = 1 if single_cls else int(data['nc']) # number of classes
# iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 zjq
# niou = iouv.numel()
# # Logging
# log_imgs = 0
# if wandb_logger and wandb_logger.wandb:
# log_imgs = min(wandb_logger.log_imgs, 100)
# # Dataloader
# if not training:
# # if device.type != 'cpu': #zjq zhushi
# # model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
# task = opt.task if opt.task in ('train', 'val') else 'val' # path to train/val/test images
# dataloader = create_dataloader_sr(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=False,
# prefix=colorstr(f'{task}: '))[0]
# seen = 0
# confusion_matrix = ConfusionMatrix(nc=nc)
# names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
# coco91class = coco80_to_coco91_class()
# s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
# p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
# loss = torch.zeros(3, device=device)
# jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
# for batch_i, (img, ir, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): #zjq
# img = img.to(device, non_blocking=True).float()
# # img = img.half() if half else img.float() # uint8 to fp16/32
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
# ir = ir.to(device, non_blocking=True).float()
# # ir = ir.half() if half else ir.float() # uint8 to fp16/32
# ir /= 255.0 # 0 - 255 to 0.0 - 1.0
# targets = targets.to(device)
# nb, _, height, width = img.shape # batch size, channels, height, width
# with torch.no_grad():
# # Run model
# t = time_synchronized()
# try:
# out, train_out,features = model(img,ir,input_mode=input_mode) #zjq inference and training outputs
# except:
# out, train_out = model(img,ir,input_mode=input_mode) #zjq inference and training outputs
# t0 += time_synchronized() - t
# # Compute loss
# if compute_loss:
# loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
# # Run NMS
# targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
# lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
# t = time_synchronized()
# out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
# # out = weighted_boxes(out,image_size=imgsz, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
# t1 += time_synchronized() - t
# # Statistics per image
# for si, pred in enumerate(out):
# labels = targets[targets[:, 0] == si, 1:]
# nl = len(labels)
# tcls = labels[:, 0].tolist() if nl else [] # target class
# path = Path(paths[si])
# seen += 1
# if len(pred) == 0:
# if nl:
# stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
# continue
# # Predictions
# predn = pred.clone()
# scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# # Append to text file
# if save_txt:
# gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
# for *xyxy, conf, cls in predn.tolist():
# xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
# line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
# with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
# f.write(('%g ' * len(line)).rstrip() % line + '\n')
# # W&B logging - Media Panel Plots
# if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
# if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
# box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
# "class_id": int(cls),
# "box_caption": "%s %.3f" % (names[cls], conf),
# "scores": {"class_score": conf},
# "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
# boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
# wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
# wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
# # Append to pycocotools JSON dictionary
# if save_json:
# # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
# image_id = int(path.stem) if path.stem.isnumeric() else path.stem
# box = xyxy2xywh(predn[:, :4]) # xywh
# box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
# for p, b in zip(pred.tolist(), box.tolist()):
# jdict.append({'image_id': image_id,
# 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
# 'bbox': [round(x, 3) for x in b],
# 'score': round(p[4], 5)})
# # Assign all predictions as incorrect
# correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
# if nl:
# detected = [] # target indices
# tcls_tensor = labels[:, 0]
# # target boxes
# tbox = xywh2xyxy(labels[:, 1:5])
# scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
# if plots:
# confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
# # Per target class
# for cls in torch.unique(tcls_tensor):
# ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
# pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
# # Search for detections
# if pi.shape[0]:
# # Prediction to target ious
# ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# # Append detections
# detected_set = set()
# for j in (ious > iouv[0]).nonzero(as_tuple=False):
# d = ti[i[j]] # detected target
# if d.item() not in detected_set:
# detected_set.add(d.item())
# detected.append(d)
# correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
# if len(detected) == nl: # all targets already located in image
# break
# # Append statistics (correct, conf, pcls, tcls)
# stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
# # Plot images
# if plots: #and batch_i < 3: #zjq
# f = save_dir / f'test_batch{batch_i}_labels.png' # labels
# # f = '/home/data/zhangjiaqing/dataset/VEDAI/train_label/'+paths[0].split('/')[-1].replace('_co','_label') #zjq
# if input_mode == 'IR':
# Thread(target=plot_images, args=(ir, targets, paths, f, names), daemon=True).start()
# else:
# Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
# f = save_dir / f'test_batch{batch_i}_pred.png' # predictions
# if input_mode == 'IR':
# Thread(target=plot_images, args=(ir, output_to_target(out), paths, f, names), daemon=True).start()
# else:
# Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
# # break
# # Compute statistics
# stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
# if len(stats) and stats[0].any():
# p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
# ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
# mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
# nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
# else:
# nt = torch.zeros(1)
# # Print results
# pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
# print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
# import xlsxwriter
# workbook = xlsxwriter.Workbook('hello.xlsx') # 建立文件
# worksheet = workbook.add_worksheet() # 建立sheet, 可以work.add_worksheet('employee')来指定sheet名,但中文名会报UnicodeDecodeErro的错误
# worksheet.write(0,0, 'all') # 向A1写入
# worksheet.write(0,1, seen) # 向A1写入
# worksheet.write(0,2,nt.sum())#向第二行第二例写入guoshun
# worksheet.write(0,3,mp*100)
# worksheet.write(0,4,mr*100)
# worksheet.write(0,5,map50*100)
# worksheet.write(0,6,map*100)
# # Print results per class
# if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
# for i, c in enumerate(ap_class):
# print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# worksheet.write(i+1,0, names[c]) # 向A1写入
# worksheet.write(i+1,1, seen) # 向A1写入
# worksheet.write(i+1,2,nt[c])#向第二行第二例写入
# worksheet.write(i+1,3,p[i]*100)
# worksheet.write(i+1,4,r[i]*100)
# worksheet.write(i+1,5,ap50[i]*100)
# worksheet.write(i+1,6,ap[i]*100)
# workbook.close()
# # Print speeds
# t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
# if not training:
# print('Speed: %.3f/%.3f/%.3f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# # Plots
# if plots:
# confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
# if wandb_logger and wandb_logger.wandb:
# val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
# wandb_logger.log({"Validation": val_batches})
# if wandb_images:
# wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
# # Save JSON
# if save_json and len(jdict):
# w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
# anno_json = '../coco/annotations/instances_val2017.json' # annotations json
# pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
# print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
# with open(pred_json, 'w') as f:
# json.dump(jdict, f)
# try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
# from pycocotools.coco import COCO
# from pycocotools.cocoeval import COCOeval
# anno = COCO(anno_json) # init annotations api
# pred = anno.loadRes(pred_json) # init predictions api
# eval = COCOeval(anno, pred, 'bbox')
# if is_coco:
# eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
# eval.evaluate()
# eval.accumulate()
# eval.summarize()
# map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
# except Exception as e:
# print(f'pycocotools unable to run: {e}')
# # Return results
# model.float() # for training
# if not training:
# s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
# print(f"Results saved to {save_dir}{s}")
# maps = np.zeros(nc) + map
# for i, c in enumerate(ap_class):
# maps[c] = ap[i]
# #return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog='test.py')
parser.add_argument('--weights', nargs='+', type=str, default=['runs/train/use/exp96_8bs_150e_0.1_disloss6_400_nwpu/weights/best.pt'], help='model.pt path(s)') #runs/train/exp60/weights/best.pt
#runs/train/1000epoch/conv/exp32/weights/best.pt runs/train/exp89/weights/best.pt
parser.add_argument('--full_weights', nargs='+', type=str, default=['runs/train/use/exp95_8bs_150e_nwpu/weights/best.pt'], help='model.pt path(s)')
parser.add_argument('--bit_width', type=int,default=None, help='bit-width')
# parser.add_argument('--data', type=str, default='data/SRvedai.yaml', help='*.data path')
parser.add_argument('--batch-size', type=int, default=8, help='size of each image batch')
parser.add_argument('--img-size', type=int, default=512, help='inference size (pixels)')
# parser.add_argument('--hr_input', default=False,action='store_true', help='high resolution input(1024*1024)') #if use SR,please set True
parser.add_argument('--input_mode', type=str, default='RGB') #RGB IR RGB+IR RGB+IR+fusion RGB+IR+SAM
parser.add_argument('--inter-threshold', type=float, default=0.1, help='the kmeans inter distance threshold')
# parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
# parser.add_argument('--iou-thres', type=float, default=0.6, help='IOU threshold for NMS')
parser.add_argument('--task', default='val', help='train, val, test, speed or study')
parser.add_argument('--device', default='1', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
# parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
# parser.add_argument('--augment', action='store_true', help='augmented inference')
# parser.add_argument('--verbose', action='store_true', help='report mAP by class')
# parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
# parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
# parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
# parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
# parser.add_argument('--project', default='runs/test', help='save to project/name')
# parser.add_argument('--name', default='exp', help='save to project/name')
# parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()
# opt.save_json |= opt.data.endswith('coco.yaml')
# opt.data = check_file(opt.data) # check file
print(opt)
check_requirements()
if opt.task in ('train', 'val', 'test'): # run normally
test(#opt.data,
opt.weights,
opt.batch_size,
opt.img_size,
opt.input_mode,
# opt.conf_thres,
# opt.iou_thres,
# opt.save_json,
# opt.single_cls,
# opt.augment,
# opt.verbose,
# save_txt=opt.save_txt | opt.save_hybrid,
# save_hybrid=opt.save_hybrid,
# save_conf=opt.save_conf,
)