-
Notifications
You must be signed in to change notification settings - Fork 0
/
02.tex
237 lines (192 loc) · 9.81 KB
/
02.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
\section{22/02/2024}
\subsection{Useful definitions and results}
\begin{definition}
A \emph{set-theoretic solution to the Yang--Baxter equation} is a pair $(X,r)$ where $X$ is a non-empty set and $r: X\times X \to X \times X$ is a map such that
\begin{align}
(r\times \id)(\id \times r)(r\times \id) = (\id \times r)(r\times \id)(\id \times r)
\end{align}
\end{definition}
\begin{definition}\index{Set-theoretic solution!Finite}\index{Set-theoretic solution!Non-degenerate}
Let $(X,r)$ be a set-theoretic solution to the Yang--Baxter equation. We say that
\begin{itemize}
\item $(X,r)$ is \emph{bijective} if $r$ is bijective.
\item $(X,r)$ is \emph{finite} if $X$ is finite.
\item $(X,r)$ is \emph{non-degenerate} if $\lambda_x,\rho_x$ are bijective for all $x\in X$.
\end{itemize}
\end{definition}
\begin{convention}
From now on, a \emph{solution} will always mean a bijective non-degenerate set-theoretic solution to the Yang--Baxter equation.
\end{convention}
\begin{definition}
A \emph{skew (left) brace} is a triple $(A,+,\circ)$, where
$(A,+)$ and $(A,\circ)$
are (not necessarily abelian)
groups and
\begin{align}
a\circ(b+c)=(a\circ b)-a+(a\circ c)
\end{align}
holds for all $a,b,c\in A$.
The groups $(A,+)$ and $(A,\circ)$ are respectively the \emph{additive} and \emph{multiplicative} group of the skew brace $A$.
\end{definition}
\begin{fact}
Let $A$ be a skew brace. The following statements hold.
\begin{enumerate}
\item $1=0$, where $0$ denotes the identity of $(A,+)$ and by $1$ the identity of $(A,\circ)$.
\item $-(a\circ b) = - a + a\circ(- b) - a$, for all $a,b \in A$.
\end{enumerate}
\end{fact}
\begin{fact}\label{fact:lambda}
Let $A$ be a skew brace. For each $a\in A$, the map
\begin{align*}
\lambda_a:A\to A, b\mapsto -a + a \circ b
\end{align*}
is an automorphism of $(A,+)$.
Moreover, the map $\lambda: (A,\circ) \to \Aut(A,+), a \mapsto \lambda_a$, is a group homomorphism.
\end{fact}
\begin{fact}\label{fact:rho}
Let $A$ be a brace. For each $a\in A$, the map
\begin{align*}
\rho_b\colon A\to A,\quad
\mapsto (\lambda_a(b))'\circ a\circ b,
\end{align*}
is bijective. Moreover, the map
$\rho\colon (A,\circ)\to\Sym(A)$, $b\mapsto\rho_b$, satisfies $\rho_c\rho_b=\rho_{b\circ c}$, for all $b,c\in A$.
\end{fact}
\begin{definition}
An \emph{ideal} of a skew brace $A$ is a strong left ideal $I$ of $A$ such that $(I,\circ)$ is a normal subgroup of $(A,\circ)$.
\end{definition}
\subsection{Selection of problems}\mbox{ }
It is possible to prove the isomorphism theorems for skew braces. (See Exercises~\ref{ex:thmiso1}--\ref{ex:thmiso4}).
\begin{exercise}
A map $f:A\to B$ between two skew braces $A$ and $B$ is a \emph{homomorphism} of skew braces if $f(a + b)= f(a) +f(b)$ and $f(a\circ b)= f(a)\circ f(b)$, for all $a,b\in A$.The \emph{kernel} of $f$ is
\begin{align*}
\ker f = \{a\in A\colon f(a)=0\}.
\end{align*}
Let $f:A\to B$ be a homomorphism of two skew braces $A$ and $B$.
Prove that $\ker f$ is an ideal of $A$.
\end{exercise}
\begin{exercise}\label{ex:thmiso1}
Let $f : A\to B$ be a homomorphism of skew braces. Prove that $A/\ker f \cong f(A)$.
\end{exercise}
\begin{exercise}\label{ex:thmiso2}
Let $A$ be a skew brace and let $B$ be a subbrace of $A$. Prove that if $I$ is an ideal of $A$, then $B\circ I$ is a subbrace of $A$, $B\cap I$ is an ideal of $B$ and $(B\circ I)/I \cong B/(B\cap I)$.
\end{exercise}
\begin{exercise}\label{ex:thmiso3}
Let $A$ be a skew brace and $I$ and $J$ be ideals of $A$. Prove that if $I\subseteq J$, then $A/J\cong (A/I)/(J/I)$.
\end{exercise}
\begin{exercise}\label{ex:thmiso4}
Let $A$ be a skew brace and let $I$ be an ideal of $A$. Prove that there is a bijective correspondence between (left) ideals of $A$ containing $I$ and (left) ideals of $A/I$.
\end{exercise}
\begin{exercise}
Let $A$ be a skew brace and $I$ be a characteristic subgroup of the additive. Prove that $I$ is a left ideal of $A$.
\end{exercise}
Let us get some concrete examples of skew braces.
\begin{exercise}
Let $p$ be a prime number and let $A=\mathbb{Z}/(p^2)$ the ring of integers modulo $p^2$. Prove that $A$ with respect to the usual sum and the operation given by $x \circ y = x+y+pxy$ is a skew brace.
\end{exercise}
\begin{exercise}[The semidirect product]
Let $A,B$ be skew braces.
Let $\alpha: (B,\circ)\to\Aut(A,+,\circ)$ be a homomorphism of groups.
Define two operations on $A\times B$ by
\begin{align*}
(a,x)+(b,y) &= (a+b,x+y)\\
(a,x)\circ(b,y) &= (a\circ\alpha_{x}(b), x\circ y),
\end{align*}
for all $a,b\in A$ and $x,y\in B$. Prove that $(A\times B, +,\circ)$ is a skew brace.
This skew brace is the \emph{semidirect product} of the skew brace $A$ by $B$ via $\alpha$, and it is denoted by $A\rtimes_{\alpha}B$.
\end{exercise}
\begin{exercise}\label{ex:ef}
Let $(A,+)$ be a group with an \emph{exact factorisation} through the subgroups $B$ and $C$ (i.e. $B$ and $C$ are subgroups of $A$ such that $B\cap C=\{ 0\}$ and $A=B+C$).
This means that each $x\in A$ can be written in a unique way as $x=x_B+x_C$, for some $x_B\in B$ and $x_C\in C$.
Set
\begin{align*}
x\circ y&=x_B+y+x_C.
\end{align*}
Prove that
\begin{enumerate}
\item $(A,\circ)$ is a group isomorphic to $B\times C$, the direct product of $B$ and $C$.
\item $(A,+,\circ)$ is a skew brace.
\end{enumerate}
\end{exercise}
\subsection{More exercises}\mbox{}
\begin{exercise}\label{ex:taurtau}
Let $(X,r)$ be a set-theoretic solution to the Yang--Baxter equation. Define for all $x,y \in X$
\begin{align*}
\bar{r}(x,y) = \tau r \tau (x,y) = (\rho_x(y),\lambda_y(x)).
\end{align*}
Then $(X,\bar{r})$ is a set-theoretic solution to the Yang--Baxter equation.
\end{exercise}
\index{Shelf}\index{Rack}
A \emph{(right) shelf} is a pair $(X,\triangleleft)$ where $X$ is a non-empty set and $\triangleleft$ is a binary operation such that
\begin{align*}
(x\triangleleft y)\triangleleft z=(x\triangleleft z)\triangleleft(y\triangleleft z).
\end{align*}
If, in addition, the maps $\rho_y:X \to X, x \mapsto x\triangleleft y$ are bijective for all $y\in X$, then $(X,\triangleleft)$ is called a \emph{(right) rack}.
\begin{exercise}\label{ex2}
Let $X$ be a non-empty set.
Let $\triangleleft: X\times X \to X$ be a binary operation and define $r: X\times X \to X\times X$ such that $r(x,y)= (y,x \triangleleft y)$. Then $r$ satisfies equation~\ref{eq:YBE} if and only if $(x\triangleleft y)\triangleleft z=(x\triangleleft z)\triangleleft(y\triangleleft z)$ holds for all $x,y,z \in X$.
Moreover, $r$ is bijective if and only if the maps $\rho_y:X\to X, x \mapsto x\triangleleft y$ are bijective.
\end{exercise}
\begin{exercise}
Let $G$ be a group.
Prove that $G$ with respect to the binary operation $\triangleleft$ defined by $x\triangleleft y =y^{-1}xy$ is a rack.
\end{exercise}
\begin{exercise}
Let $(X,r)$ be a solution. Define
\begin{align*}
x\triangleleft y = \lambda_y\rho_{\lambda_x^{-1}(xy}(x).
\end{align*}
Prove that $(X,\triangleleft)$ is a shelf.
\end{exercise}
\begin{exercise}
Let $A$ be a skew brace. Prove that
\begin{align*}
\rho_b(a) = \lambda^{-1}_{\lambda_a(b)}(-(a\circ b) +a+a\circ b)
\end{align*}
\end{exercise}
\begin{exercise}
Let $(A,+)$ be a (not necessarily abelian) group.
\begin{enumerate}
\item Prove that a structure of skew brace over $A$ is equivalent to an operation $A\times A \to A$ $(a,b)\mapsto a\ast b$, such that
\begin{align*}
a \ast (b+c) = a\ast b + b + a\ast c - b
\end{align*}
holds for all $a,b,c \in A$ and the operation $a\circ b = a+ a\ast b + c$ turns $A$ into a group.
\item Deduce that radical rings are examples of skew braces.
\end{enumerate}
\end{exercise}
\begin{exercise}
Let $A$ be a skew brace and $a\ast b = \lambda_a(b)-b = -a+a\circ b - b$. Prove the following identities:
\begin{enumerate}
\item $a\ast (b+c) = a\ast b + b +a\ast c -b$.
\item $(a\circ b)\ast c = (a\ast(b\ast c)) + b\ast c + a\ast c$.
\end{enumerate}
\end{exercise}
\begin{exercise}
Let $(A,+,\circ)$ be a triple, where $(A,+)$ and $(A,\circ)$ are groups, and $\lambda: A \to \Sym(A)$, $a\mapsto \lambda_a$ with $\lambda_a(b)=-a+a\circ b$. Prove that the following statements are equivalent:
\begin{enumerate}
\item $(A,+,\circ)$ is a skew brace.
\item $\lambda_a\lambda_b(c)=\lambda_{a\circ b}(c)$, for all $a,b,c\in A$.
\item $\lambda_a(b+c) = \lambda_a(b)+\lambda_a(c)$, for all $a,b,c\in A$.
\end{enumerate}
\end{exercise}
\begin{exercise}\label{ex:sd}
Let $(A,+)$ and $(M,+)$ be groups and let $\alpha\colon A\to\Aut(M)$ be a
group homomorphism. Prove that $M\times A$ with
\begin{align*}
(x,a)+(y,b)&=(x+y,a+b),
\\
(x,a)\circ (y,b)&=(x+\alpha_a(y),a+b)
\end{align*}
is a skew brace. Similarly, prove that $M\times A$ with
\begin{align*}
(x,a)+(y,b)&=(x+\alpha_a(y),a+b),\\
(x,a)\circ (y,b)&=(x+y,b+a)
\end{align*}
is a skew brace.
\end{exercise}
\begin{exercise}\label{ex:fix}
Consider the semidirect product $A= \mathbb{Z}/(3) \rtimes \mathbb{Z}/(2)$ of the trivial
skew braces $\mathbb{Z}/(3)$ and $\mathbb{Z}/(2)$ via the non-trivial action of $\mathbb{Z}/(2)$ over $\mathbb{Z}/(3)$.
Prove that $\Fix(A)=\{b \in B\colon \lambda_x(b)=b,\ \forall b\in A\}$ is not an ideal of $A$.
\end{exercise}