-
Notifications
You must be signed in to change notification settings - Fork 1
/
ddpm_models.py
291 lines (234 loc) · 9.76 KB
/
ddpm_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
'''
This code is modified from,
https://github.com/cloneofsimo/minDiffusion
Diffusion model is based on DDPM,
https://arxiv.org/abs/2006.11239
The conditioning idea is taken from 'Classifier-Free Diffusion Guidance',
https://arxiv.org/abs/2207.12598
This technique also features in ImageGen 'Photorealistic Text-to-Image Diffusion Modelswith Deep Language Understanding',
https://arxiv.org/abs/2205.11487
'''
from tqdm import tqdm
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
import numpy as np
import os
import random
import hydra
from hydra.utils import instantiate
from utils.metric_dataloader import MetricDataPreprocessor
class ResidualConvBlock(nn.Module):
def __init__(
self, in_channels: int, out_channels: int, is_res: bool = False
) -> None:
super().__init__()
'''
standard ResNet style convolutional block
'''
self.same_channels = in_channels==out_channels
self.is_res = is_res
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
self.conv2 = nn.Sequential(
nn.Conv2d(out_channels, out_channels, 3, 1, 1),
nn.BatchNorm2d(out_channels),
nn.GELU(),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.is_res:
x1 = self.conv1(x)
x2 = self.conv2(x1)
# this adds on correct residual in case channels have increased
if self.same_channels:
out = x + x2
else:
out = x1 + x2
return out / 1.414
else:
x1 = self.conv1(x)
x2 = self.conv2(x1)
return x2
class UnetDown(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetDown, self).__init__()
'''
process and downscale the image feature maps
'''
layers = [ResidualConvBlock(in_channels, out_channels), nn.MaxPool2d(2)]
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
class UnetUp(nn.Module):
def __init__(self, in_channels, out_channels):
super(UnetUp, self).__init__()
'''
process and upscale the image feature maps
'''
layers = [
nn.ConvTranspose2d(in_channels, out_channels, 2, 2),
ResidualConvBlock(out_channels, out_channels),
ResidualConvBlock(out_channels, out_channels),
]
self.model = nn.Sequential(*layers)
def forward(self, x, skip):
x = torch.cat((x, skip), 1)
x = self.model(x)
return x
class EmbedFC(nn.Module):
def __init__(self, input_dim, emb_dim):
super(EmbedFC, self).__init__()
'''
generic one layer FC NN for embedding things
'''
self.input_dim = input_dim
layers = [
nn.Linear(input_dim, emb_dim),
nn.GELU(),
nn.Linear(emb_dim, emb_dim),
]
self.model = nn.Sequential(*layers)
def forward(self, x):
x = x.view(-1, self.input_dim)
return self.model(x)
class ContextUnet(nn.Module):
def __init__(self, in_channels, n_feat = 256, z_dim=2):
super(ContextUnet, self).__init__()
self.in_channels = in_channels
self.n_feat = n_feat
self.z_dim = z_dim
self.init_conv = ResidualConvBlock(in_channels, n_feat, is_res=True)
self.down1 = UnetDown(n_feat, n_feat)
self.down2 = UnetDown(n_feat, 2 * n_feat)
self.to_vec = nn.Sequential(nn.AvgPool2d(8), nn.GELU())
self.timeembed1 = EmbedFC(1, 2*n_feat)
self.timeembed2 = EmbedFC(1, 1*n_feat)
self.contextembed1 = EmbedFC(z_dim , 2*n_feat)
self.contextembed2 = EmbedFC(z_dim , 1*n_feat)
self.up0 = nn.Sequential(
nn.ConvTranspose2d(2 * n_feat, 2 * n_feat, 8, 8), # otherwise just have 2*n_feat
nn.GroupNorm(8, 2 * n_feat),
nn.ReLU(),
)
self.up1 = UnetUp(4 * n_feat, n_feat)
self.up2 = UnetUp(2 * n_feat, n_feat)
self.out = nn.Sequential(
nn.Conv2d(2 * n_feat, n_feat, 3, 1, 1),
nn.GroupNorm(8, n_feat),
nn.ReLU(),
nn.Conv2d(n_feat, self.in_channels, 3, 1, 1),
)
def forward(self, x, c, t, context_mask):
x = self.init_conv(x)
down1 = self.down1(x)
down2 = self.down2(down1)
hiddenvec = self.to_vec(down2)
context_mask = context_mask.repeat(1, self.z_dim)
context_mask = (-1*(1-context_mask)) # need to flip 0 <-> 1
c = c * context_mask
# embed context, time step
cemb1 = self.contextembed1(c).view(-1, self.n_feat * 2, 1, 1)
temb1 = self.timeembed1(t).view(-1, self.n_feat * 2, 1, 1)
cemb2 = self.contextembed2(c).view(-1, self.n_feat, 1, 1)
temb2 = self.timeembed2(t).view(-1, self.n_feat, 1, 1)
# could concatenate the context embedding here instead of adaGN
up1 = self.up0(hiddenvec)
up2 = self.up1(cemb1*up1+ temb1, down2) # add and multiply embeddings
up3 = self.up2(cemb2*up2+ temb2, down1)
out = self.out(torch.cat((up3, x), 1))
return out
def ddpm_schedules(beta1, beta2, T):
"""
Returns pre-computed schedules for DDPM sampling, training process.
"""
assert beta1 < beta2 < 1.0, "beta1 and beta2 must be in (0, 1)"
beta_t = (beta2 - beta1) * torch.arange(0, T + 1, dtype=torch.float32) / T + beta1
sqrt_beta_t = torch.sqrt(beta_t)
alpha_t = 1 - beta_t
log_alpha_t = torch.log(alpha_t)
alphabar_t = torch.cumsum(log_alpha_t, dim=0).exp()
sqrtab = torch.sqrt(alphabar_t)
oneover_sqrta = 1 / torch.sqrt(alpha_t)
sqrtmab = torch.sqrt(1 - alphabar_t)
mab_over_sqrtmab_inv = (1 - alpha_t) / sqrtmab
return {
"alpha_t": alpha_t, # \alpha_t
"oneover_sqrta": oneover_sqrta, # 1/\sqrt{\alpha_t}
"sqrt_beta_t": sqrt_beta_t, # \sqrt{\beta_t}
"alphabar_t": alphabar_t, # \bar{\alpha_t}
"sqrtab": sqrtab, # \sqrt{\bar{\alpha_t}}
"sqrtmab": sqrtmab, # \sqrt{1-\bar{\alpha_t}}
"mab_over_sqrtmab": mab_over_sqrtmab_inv, # (1-\alpha_t)/\sqrt{1-\bar{\alpha_t}}
}
class DDPM(nn.Module):
def __init__(self, nn_model, betas, n_T, device, drop_prob=0.1):
super(DDPM, self).__init__()
self.nn_model = nn_model.to(device)
# register_buffer allows accessing dictionary produced by ddpm_schedules
# e.g. can access self.sqrtab later
for k, v in ddpm_schedules(betas[0], betas[1], n_T).items():
self.register_buffer(k, v)
self.n_T = n_T
self.device = device
self.drop_prob = drop_prob
self.loss_mse = nn.MSELoss()
def forward(self, x, c):
"""
this method is used in training, so samples t and noise randomly
"""
_ts = torch.randint(1, self.n_T+1, (x.shape[0],)).to(self.device) # t ~ Uniform(0, n_T)
noise = torch.randn_like(x) # eps ~ N(0, 1)
x_t = (
self.sqrtab[_ts, None, None, None] * x
+ self.sqrtmab[_ts, None, None, None] * noise
) # This is the x_t, which is sqrt(alphabar) x_0 + sqrt(1-alphabar) * eps
# We should predict the "error term" from this x_t. Loss is what we return.
# dropout context with some probability
batch_size, z_dim = c.shape
context_mask = torch.bernoulli(torch.zeros((batch_size, 1))+self.drop_prob).to(self.device)
# return MSE between added noise, and our predicted noise
return self.loss_mse(noise, self.nn_model(x_t, c, _ts / self.n_T, context_mask))
def sample_cmapss(self, n_sample, size, device, z_space_contexts, guide_w = 0.0):
# z_space_contexts = (N, z_dim) = (N, 2)
num_z_contexts, z_dim = z_space_contexts.shape
x_i = torch.randn(n_sample*num_z_contexts, *size).to(device) # x_T ~ N(0, 1), sample initial noise
c_i = z_space_contexts.to(device) # latent space vectors
c_i = c_i.repeat(n_sample, 1)
num_inputs, z_dim = c_i.shape
# don't drop context at test time
context_mask = torch.zeros((num_inputs, 1)).to(device)
# double the batch
c_i = c_i.repeat(2, 1)
context_mask = context_mask.repeat(2, 1)
context_mask[num_inputs:] = 1. # makes second half of batch context free
x_i_store = [] # keep track of generated steps in case want to plot something
print()
for i in range(self.n_T, 0, -1):
print(f'sampling timestep {i}',end='\r')
#print(f'sampling timestep {i}')
t_is = torch.tensor([i / self.n_T]).to(device)
t_is = t_is.repeat(n_sample*num_z_contexts,1,1,1)
# double batch
x_i = x_i.repeat(2,1,1,1)
t_is = t_is.repeat(2,1,1,1)
z = torch.randn(n_sample*num_z_contexts, *size).to(device) if i > 1 else 0
# split predictions and compute weighting
#import os, psutil
#print(round(psutil.Process(os.getpid()).memory_info().rss / 1024 ** 3,2), "GB")
eps = self.nn_model(x_i, c_i, t_is, context_mask)
eps1 = eps[:n_sample*num_z_contexts]
eps2 = eps[n_sample*num_z_contexts:]
eps = (1+guide_w)*eps1 - guide_w*eps2
x_i = x_i[:n_sample*num_z_contexts]
x_i = (
self.oneover_sqrta[i] * (x_i - eps * self.mab_over_sqrtmab[i])
+ self.sqrt_beta_t[i] * z
)
if i%20==0 or i==self.n_T or i<8:
x_i_store.append(x_i.detach().cpu().numpy())
x_i_store = np.array(x_i_store)
return x_i, x_i_store