You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Besides, how do we use the output model_prunned ? Do we have to write our own pytorch code to test any random input images not in the test and training set ?
[phung@archlinux pytorch-pruning]$ ls -al test/
total 16
drwxr-xr-x 2 phung phung 4096 Oct 20 20:55 .
drwxr-xr-x 6 phung phung 4096 Oct 20 23:57 ..
lrwxrwxrwx 1 phung phung 96 Oct 20 20:54 Lemon -> /home/phung/Documents/Grive/Personal/Coursera/Machine_Learning/dataset/kaggle_fruits/Test/Lemon/
lrwxrwxrwx 1 phung phung 97 Oct 20 20:55 Orange -> /home/phung/Documents/Grive/Personal/Coursera/Machine_Learning/dataset/kaggle_fruits/Test/Orange/
[phung@archlinux pytorch-pruning]$ ls -al train/
total 16
drwxr-xr-x 2 phung phung 4096 Oct 20 20:54 .
drwxr-xr-x 6 phung phung 4096 Oct 20 23:57 ..
lrwxrwxrwx 1 phung phung 100 Oct 20 20:54 Lemon -> /home/phung/Documents/Grive/Personal/Coursera/Machine_Learning/dataset/kaggle_fruits/Training/Lemon/
lrwxrwxrwx 1 phung phung 100 Oct 20 20:53 Orange -> /home/phung/Documents/Grive/Personal/Coursera/Machine_Learning/dataset/kaggle_fruits/Training/Lemon/
[phung@archlinux pytorch-pruning]$ python finetune.py --train && python finetune.py --prune
/usr/lib/python3.7/site-packages/torchvision/transforms/transforms.py:187: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
warnings.warn("The use of the transforms.Scale transform is deprecated, " +
/usr/lib/python3.7/site-packages/torchvision/transforms/transforms.py:562: UserWarning: The use of the transforms.RandomSizedCrop transform is deprecated, please use transforms.RandomResizedCrop instead.
warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
Epoch: 0
Accuracy: 0.49382716049382713
Epoch: 1
Accuracy: 0.49382716049382713
Epoch: 2
Accuracy: 0.4876543209876543
Epoch: 3
Accuracy: 0.5339506172839507
Epoch: 4
Accuracy: 0.49382716049382713
Epoch: 5
Accuracy: 0.49382716049382713
Epoch: 6
Accuracy: 0.49382716049382713
Epoch: 7
Accuracy: 0.3765432098765432
Epoch: 8
Accuracy: 0.49382716049382713
Epoch: 9
Accuracy: 0.5
Epoch: 10
Accuracy: 0.49382716049382713
Epoch: 11
Accuracy: 0.49382716049382713
Epoch: 12
Accuracy: 0.49382716049382713
Epoch: 13
Accuracy: 0.24691358024691357
Epoch: 14
Accuracy: 0.3333333333333333
Epoch: 15
Accuracy: 0.4845679012345679
Epoch: 16
Accuracy: 0.5
Epoch: 17
Accuracy: 0.49382716049382713
Epoch: 18
Accuracy: 0.5030864197530864
Epoch: 19
Accuracy: 0.49382716049382713
Finished fine tuning.
/usr/lib/python3.7/site-packages/torchvision/transforms/transforms.py:187: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
warnings.warn("The use of the transforms.Scale transform is deprecated, " +
/usr/lib/python3.7/site-packages/torchvision/transforms/transforms.py:562: UserWarning: The use of the transforms.RandomSizedCrop transform is deprecated, please use transforms.RandomResizedCrop instead.
warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
Accuracy: 0.49382716049382713
Number of prunning iterations to reduce 67% filters 5
Ranking filters..
Layers that will be prunned {17: 62, 28: 117, 10: 19, 24: 57, 12: 20, 7: 8, 19: 57, 0: 9, 26: 60, 21: 72, 14: 22, 5: 6, 2: 3}
Prunning filters..
Filters prunned 87.87878787878788%
Accuracy: 0.49382716049382713
Fine tuning to recover from prunning iteration.
Epoch: 0
Accuracy: 0.5061728395061729
Epoch: 1
Accuracy: 0.4722222222222222
Epoch: 2
Accuracy: 0.5061728395061729
Epoch: 3
Accuracy: 0.49382716049382713
Epoch: 4
Accuracy: 0.558641975308642
Epoch: 5
Accuracy: 0.7469135802469136
Epoch: 6
Accuracy: 0.7314814814814815
Epoch: 7
Accuracy: 0.6234567901234568
Epoch: 8
Accuracy: 0.5061728395061729
Epoch: 9
Accuracy: 0.5401234567901234
Finished fine tuning.
Ranking filters..
Layers that will be prunned {28: 97, 21: 88, 19: 53, 17: 42, 24: 63, 26: 103, 12: 16, 5: 5, 10: 18, 14: 18, 7: 6, 2: 2, 0: 1}
Prunning filters..
Filters prunned 75.75757575757575%
Accuracy: 0.49382716049382713
Fine tuning to recover from prunning iteration.
Epoch: 0
Accuracy: 0.5061728395061729
Epoch: 1
Accuracy: 0.404320987654321
Epoch: 2
Accuracy: 0.24691358024691357
Epoch: 3
Accuracy: 0.5030864197530864
Epoch: 4
Accuracy: 0.4012345679012346
Epoch: 5
Accuracy: 0.5061728395061729
Epoch: 6
Accuracy: 0.5061728395061729
Epoch: 7
Accuracy: 0.5061728395061729
Epoch: 8
Accuracy: 0.5061728395061729
Epoch: 9
Accuracy: 0.5061728395061729
Finished fine tuning.
Ranking filters..
Layers that will be prunned {28: 90, 26: 64, 12: 22, 24: 87, 17: 62, 21: 52, 7: 8, 5: 8, 19: 63, 10: 24, 0: 4, 14: 26, 2: 2}
Prunning filters..
Filters prunned 63.63636363636363%
Accuracy: 0.5061728395061729
Fine tuning to recover from prunning iteration.
Epoch: 0
Accuracy: 0.5061728395061729
Epoch: 1
Accuracy: 0.49382716049382713
Epoch: 2
Accuracy: 0.49382716049382713
Epoch: 3
Accuracy: 0.6604938271604939
Epoch: 4
Accuracy: 1.0
Epoch: 5
Accuracy: 0.6790123456790124
Epoch: 6
Accuracy: 0.5061728395061729
Epoch: 7
Accuracy: 0.5061728395061729
Epoch: 8
Accuracy: 0.5679012345679012
Epoch: 9
Accuracy: 0.9845679012345679
Finished fine tuning.
Ranking filters..
Layers that will be prunned {28: 75, 14: 25, 26: 74, 21: 88, 19: 61, 7: 14, 17: 49, 24: 66, 10: 25, 0: 6, 12: 18, 5: 7, 2: 4}
Prunning filters..
Filters prunned 51.515151515151516%
Accuracy: 0.6358024691358025
Fine tuning to recover from prunning iteration.
Epoch: 0
Accuracy: 0.7623456790123457
Epoch: 1
Accuracy: 0.7623456790123457
Epoch: 2
Accuracy: 0.6851851851851852
Epoch: 3
Accuracy: 0.8950617283950617
Epoch: 4
Accuracy: 0.9660493827160493
Epoch: 5
Accuracy: 1.0
Epoch: 6
Accuracy: 0.49382716049382713
Epoch: 7
Accuracy: 0.49691358024691357
Epoch: 8
Accuracy: 0.9691358024691358
Epoch: 9
Accuracy: 0.9783950617283951
Finished fine tuning.
Ranking filters..
Layers that will be prunned {28: 73, 26: 70, 24: 82, 19: 78, 14: 35, 17: 56, 21: 49, 0: 3, 5: 11, 12: 27, 10: 19, 7: 6, 2: 3}
Prunning filters..
Filters prunned 39.39393939393939%
Accuracy: 0.9074074074074074
Fine tuning to recover from prunning iteration.
Epoch: 0
Accuracy: 0.8364197530864198
Epoch: 1
Accuracy: 0.9691358024691358
Epoch: 2
Accuracy: 0.49382716049382713
Epoch: 3
Accuracy: 0.5092592592592593
Epoch: 4
Accuracy: 0.5864197530864198
Epoch: 5
Accuracy: 0.49382716049382713
Epoch: 6
Accuracy: 0.49382716049382713
Epoch: 7
Accuracy: 1.0
Epoch: 8
Accuracy: 1.0
Epoch: 9
Accuracy: 0.8703703703703703
Finished fine tuning.
Finished. Going to fine tune the model a bit more
Epoch: 0
Accuracy: 0.49382716049382713
Epoch: 1
Accuracy: 0.8333333333333334
Epoch: 2
Accuracy: 0.7561728395061729
Epoch: 3
Accuracy: 0.49382716049382713
Epoch: 4
Accuracy: 0.5370370370370371
Epoch: 5
Accuracy: 1.0
Epoch: 6
Accuracy: 1.0
Epoch: 7
Accuracy: 0.9135802469135802
Epoch: 8
Accuracy: 0.6666666666666666
Epoch: 9
Accuracy: 1.0
Epoch: 10
Accuracy: 0.49382716049382713
Epoch: 11
Accuracy: 1.0
Epoch: 12
Accuracy: 0.49382716049382713
Epoch: 13
Accuracy: 0.49382716049382713
Epoch: 14
Accuracy: 0.49382716049382713
Finished fine tuning.
[phung@archlinux pytorch-pruning]$ ls -al
total 645652
drwxr-xr-x 6 phung phung 4096 Oct 20 23:57 .
drwxr-xr-x 6 phung phung 4096 Oct 5 08:04 ..
-rw-r--r-- 1 phung phung 1695 Oct 15 23:50 dataset.py
-rw-r--r-- 1 phung phung 9323 Oct 16 09:16 finetune.py
drwxr-xr-x 8 phung phung 4096 Oct 20 21:53 .git
-rw-r--r-- 1 phung phung 50 Oct 20 20:58 .gitignore
-rw-r--r-- 1 phung phung 537103112 Oct 20 21:49 model
-rw-r--r-- 1 phung phung 123976929 Oct 20 23:57 model_prunned
-rw-r--r-- 1 phung phung 4939 Oct 20 21:15 prune.py
drwxr-xr-x 2 phung phung 4096 Oct 20 21:18 pycache
-rw-r--r-- 1 phung phung 1488 Sep 27 22:54 README.md
drwxr-xr-x 2 phung phung 4096 Oct 20 20:55 test
drwxr-xr-x 2 phung phung 4096 Oct 20 20:54 train
[phung@archlinux pytorch-pruning]$
The text was updated successfully, but these errors were encountered:
When I use my own modified pytorch-pruning for python 3 with this fruits dataset , I have quite low accuracy value. May I know why ?
Besides, how do we use the output model_prunned ? Do we have to write our own pytorch code to test any random input images not in the test and training set ?
The text was updated successfully, but these errors were encountered: