forked from city-super/BungeeNeRF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GES2pose.py
134 lines (100 loc) · 4.99 KB
/
GES2pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import math
import os
import json
import imageio
from sklearn.metrics import pairwise_distances
def get_intrinsic(imgdir):
imgfiles = [os.path.join(imgdir, f) for f in sorted(os.listdir(imgdir)) if f.endswith('JPG') or f.endswith('jpg') or f.endswith('png') or f.endswith('jpeg')]
H, W, C = imageio.imread(imgfiles[0]).shape
vfov = 40
focal = H / 2 / np.tan(np.deg2rad(vfov/2))
return H, W, focal
def eulerAnglesToRotationMatrix(theta) :
R_x = np.array([[1, 0, 0 ],
[0, math.cos(theta[0]), -math.sin(theta[0]) ],
[0, math.sin(theta[0]), math.cos(theta[0]) ]
])
R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ],
[0, 1, 0 ],
[-math.sin(theta[1]), 0, math.cos(theta[1]) ]
])
R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0],
[math.sin(theta[2]), math.cos(theta[2]), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot( R_y, R_x ))
return R
def pad_rot(rot):
padh = lambda x: np.hstack([x, np.zeros((x.shape[0], 1))])
padv = lambda x: np.vstack([x, np.zeros((1, x.shape[1]))])
rot_mat = padv(padh(rot))
rot_mat[-1,-1] = 1
return rot_mat
def config_parser():
import configargparse
parser = configargparse.ArgumentParser()
parser.add_argument("--datadir", type=str, default='data/multiscale_google_56Leonard', help='path to your meta')
parser.add_argument("--latlng", type=lambda s: [float(item) for item in s.split(',')], default=[40.71761215662889,-74.00627852686617], help='latlng of center building')
parser.add_argument("--scale_split", type=lambda s: [int(item) for item in s.split(',')], default=[275,150,70,0], help='split index of each scale, mannually set for now')
return parser
if __name__ == '__main__':
parser = config_parser()
args = parser.parse_args()
with open(os.path.join(args.datadir, 'GES_local.json'), 'r') as f:
data = json.load(f)
GES_pos = np.array([[data['cameraFrames'][i]['position']['x'],
data['cameraFrames'][i]['position']['y'],
data['cameraFrames'][i]['position']['z']]
for i in range(len(data['cameraFrames']))])
H, W, focal = get_intrinsic(os.path.join(args.datadir, 'images'))
# rescale the whole range if you want
scale = 2**3 * np.pi / max(GES_pos.max(), -GES_pos.min())
SS = np.eye(4)
SS[0,0] = scale
SS[1,1] = scale
SS[2,2] = scale
rclat, rclng = np.radians(args.latlng[0]), np.radians(args.latlng[1])
rot_ECEF2ENUV = np.array([[-math.sin(rclng), math.cos(rclng), 0],
[-math.sin(rclat)*math.cos(rclng), -math.sin(rclat)*math.sin(rclng), math.cos(rclat)],
[math.cos(rclat)*math.cos(rclng), math.cos(rclat)*math.sin(rclng), math.sin(rclat)]])
nxyz = []
poses = []
for i in range(len(data['cameraFrames'])):
position = data['cameraFrames'][i]['position']
pos_x = position['x']
pos_y = position['y']
pos_z = position['z']
xyz = np.array([pos_x, pos_y, pos_z])
[pos_e,pos_n,pos_u] = np.dot(rot_ECEF2ENUV, xyz)
rotation = data['cameraFrames'][i]['rotation']
x = np.radians(-rotation['x'])
y = np.radians(180-rotation['y'])
z = np.radians(180+rotation['z'])
rot_mat = np.linalg.inv(eulerAnglesToRotationMatrix([x, y, z]))
rot_mat = np.dot(rot_ECEF2ENUV, rot_mat)
GES_rotmat = pad_rot(rot_mat)
xyz = np.array([pos_e,pos_n,pos_u,1])[None,:]
nx,ny,nz = np.dot(SS, xyz.T)[:3,0]
nxyz.append([nx,ny,nz])
GES_rotmat[:3,3] = np.array([nx,ny,nz])
c2w = (np.hstack([GES_rotmat[:3,:4], np.array([[H, W, focal]]).T]))
poses.append(c2w)
nxyz = np.array(nxyz)
dists = np.sqrt(np.sum(nxyz**2, -1))
# heuristic bds (NOT USED IN TRAINING)
dists = pairwise_distances(np.array(poses)[:,:,3])
dists_flatten = dists.flatten()
self_idx = [i*len(dists)+i for i in range(len(dists))]
new_dists = np.array([dists_flatten[i] for i in range(len(dists)*len(dists)) if i not in self_idx])
near = max(new_dists.min(), 1e-10)
far = 1.1 * new_dists.max()
poses = np.array(poses).reshape(-1, 3*5)
bds = np.array([[near, far] for _ in range(len(poses))])
poses_bounds = np.hstack([poses, bds])
cam_pose = {'poses' : poses_bounds.tolist(),
'scene_scale' : scale,
'scene_origin' : [0., 0., -6371011.], # earth center is fixed in ENU coord
'scale_split' : args.scale_split,}
with open(os.path.join(args.datadir, 't_poses_enu.json'), 'w') as f:
json.dump(cam_pose, f)