forked from WISDEM/FLORISSE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FLORISvsSOWFA_noField.py
281 lines (215 loc) · 10.3 KB
/
FLORISvsSOWFA_noField.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# This example script compares FLORIS predictions with steady-state SOWFA data as obtained
# throught the simulations described in:
#
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
from scipy.io import loadmat
import pickle
from Parameters import FLORISParameters
from Circle_assembly import floris_assembly_opt_AEP
# select what plots to generate
just_SOWFA = True
plot_prefix = ""
# Load steady-state power data from SOWFA
ICOWESdata = loadmat('YawPosResults.mat')
# visualization: define resolution
resolution = 0
# Define turbine characteristics
rotorDiameter = 126.4
rotorArea = np.pi*rotorDiameter*rotorDiameter/4.0
axialInduction = 1.0/3.0 # used only for initialization
generator_efficiency = 0.944
hub_height = 90.0
NREL5MWCPCT = pickle.load(open('NREL5MWCPCT.p'))
datasize = NREL5MWCPCT.CP.size
turbineXinit = np.array([1118.1, 1881.9])
turbineYinit = np.array([1279.5, 1720.5])
nTurbines = len(turbineXinit)
myFloris = floris_assembly_opt_AEP(nTurbines=2, nDirections=1, optimize_yaw=False,
optimize_position=False,
datasize=datasize, nSamples = resolution*resolution)
# use default FLORIS parameters
myFloris.parameters = FLORISParameters()
# load turbine properties into FLORIS
myFloris.curve_wind_speed = NREL5MWCPCT.wind_speed
myFloris.curve_CP = NREL5MWCPCT.CP
myFloris.curve_CT = NREL5MWCPCT.CT
myFloris.axialInduction = np.array([axialInduction, axialInduction])
myFloris.rotorDiameter = np.array([rotorDiameter, rotorDiameter])
myFloris.rotorArea = np.array([rotorArea, rotorArea])
myFloris.hubHeight = np.array([hub_height, hub_height])
myFloris.generator_efficiency = np.array([generator_efficiency, generator_efficiency])
myFloris.turbineX = turbineXinit
myFloris.turbineY = turbineYinit
# Define site measurements
windDirection = 30.
myFloris.windrose_directions = np.array([windDirection])
wind_speed = 8.1 # m/s
myFloris.windrose_speeds = wind_speed
myFloris.air_density = 1.1716
myFloris.initVelocitiesTurbines = np.ones_like(myFloris.windrose_directions)*wind_speed
# visualization:
# SWEEP TURBINE YAW
FLORISpower = list()
yawrange = ICOWESdata['yaw'][0]
for yaw1 in yawrange:
print "yaw in: ", yaw1*np.pi/180.
myFloris.yaw = np.array([yaw1, 0.0])
myFloris.run()
FLORISpower.append(myFloris.floris_power_0.wt_power)
# quit()
FLORISpower = np.array(FLORISpower)
SOWFApower = np.array([ICOWESdata['yawPowerT1'][0],ICOWESdata['yawPowerT2'][0]]).transpose()/1000.
figPower, axesPower = plt.subplots(ncols = 2, sharey = True)
axesPower[0].plot(yawrange.transpose(), FLORISpower[:,0], 'r-', yawrange.transpose(), SOWFApower[:,0], 'ro')
axesPower[0].plot(yawrange.transpose(), FLORISpower[:,1], 'b-', yawrange.transpose(), SOWFApower[:,1], 'bo')
axesPower[0].plot(yawrange.transpose(), FLORISpower[:,0]+FLORISpower[:,1], 'k-', yawrange.transpose(), SOWFApower[:,0]+SOWFApower[:,1], 'ko')
axesPower[0].set_xlabel('yaw front turbine 1 (deg)')
axesPower[0].set_ylabel('power (kW)')
axesPower[0].legend(['front turbine FLORIS', 'front turbine SOWFA', 'back turbine FLORIS', 'back turbine SOWFA', 'total FLORIS', 'total SOWFA'])
# SWEEP TURBINE POSITIONS
posrange = ICOWESdata['pos'][0]
myFloris.yaw = np.array([0.0, 0.0])
FLORISpower = list()
for pos2 in posrange:
# Define turbine locations and orientation
effUdXY = 0.523599
XY = np.array([turbineXinit, turbineYinit]) + np.dot(np.array([[np.cos(effUdXY),-np.sin(effUdXY)], [np.sin(effUdXY),np.cos(effUdXY)]]), np.array([[0., 0], [0,pos2]]))
myFloris.turbineX = XY[0,:]
myFloris.turbineY = XY[1,:]
myFloris.run()
FLORISpower.append(myFloris.floris_power_0.wt_power)
# plot powers
FLORISpower = np.array(FLORISpower)
SOWFApower = np.array([ICOWESdata['posPowerT1'][0],ICOWESdata['posPowerT2'][0]]).transpose()/1000.
axesPower[1].plot(posrange, FLORISpower[:,0], 'r-', posrange, SOWFApower[:,0], 'ro')
axesPower[1].plot(posrange, FLORISpower[:,1], 'b-', posrange, SOWFApower[:,1], 'bo')
axesPower[1].plot(posrange, FLORISpower[:,0]+FLORISpower[:,1], 'k-', posrange, SOWFApower[:,0]+SOWFApower[:,1], 'ko')
axesPower[1].set_xlabel('back turbine displacement (m)')
axesPower[1].set_ylabel('power (kW)')
lgd = axesPower[0].legend(loc='lower left', bbox_to_anchor=(0.0, 1.05),
fancybox=False, shadow=False, ncol=2)
plt.tight_layout()
if not plot_prefix == "":
plt.savefig(plot_prefix+"SOWFA.pdf", bbox_extra_artists=(lgd,))#, bbox_inches='tight')
# plt.savefig("masterSowfaFloris.pdf")
# ############
if not just_SOWFA:
fig, axes = plt.subplots(ncols=2, nrows=1, sharey=False)
posrange = np.linspace(-3.*rotorDiameter, 30.*rotorDiameter, num=1000)
yaw = np.array([0.0, 0.0])
wind_direction = 0.
myFloris.yaw = yaw
myFloris.windrose_directions = np.array([wind_direction])
FLORISpower = list()
FLORISvelocity = list()
for pos2 in posrange:
# assign values to yaw
myFloris.turbineX = np.array([0., pos2])
myFloris.turbineY = np.array([0.0, 0.0])
# run the problem at given conditions
myFloris.run()
# quit()
# print np.sqrt((turbineY[0]-turbineY[1])**2+(turbineX[0]-turbineX[1])**2)/rotorDiameter # print downwind distance
FLORISpower.append(list(myFloris.floris_power_0.wt_power))
FLORISvelocity.append(list(myFloris.floris_power_0.velocitiesTurbines))
FLORISpower = np.array(FLORISpower)
FLORISvelocity = np.array(FLORISvelocity)
axes[1].plot(posrange/rotorDiameter, FLORISpower[:, 1], '#7CFC00', label='FLORIS model')
axes[1].plot(np.array([7, 7]), np.array([0, 1800]), '--k', label='Tuning point')
axes[1].set_xlabel('x/D')
axes[1].set_ylabel('Power (kW)')
axes[1].legend(loc=4)
axes[0].plot(posrange/rotorDiameter, FLORISvelocity[:, 1], '#7CFC00', label='FLORIS model')
axes[0].plot(np.array([7, 7]), np.array([2, 9]), '--k', label='Tuning point')
axes[0].set_xlabel('x/D')
axes[0].set_ylabel('Valocity (m/s)')
axes[0].legend(loc=4)
# plt.show()
if not plot_prefix == "":
plt.savefig(plot_prefix+"DownwindVelocity.pdf", bbox_extra_artists=(lgd,))#, bbox_inches='tight')
# plt.savefig("masterPowerVelocityDownwindCorrected.pdf")
plt.tight_layout()
FLORIScenters = list()
FLORISdiameters = list()
FLORISoverlap = list()
# prob['wakeCentersYT'][2] = 0.
for pos2 in posrange:
# assign values to yaw
myFloris.turbineX = np.array([0., pos2])
myFloris.turbineY = np.array([0.0, 0.0])
# run the problem at given conditions
myFloris.run()
# print np.sqrt((turbineY[0]-turbineY[1])**2+(turbineX[0]-turbineX[1])**2)/rotorDiameter # print downwind distance
# print prob['wakeCentersYT']
print "wakeCentersYT", myFloris.floris_wcent_wdiam_0.wakeCentersYT
print "wakeDiametersT: ", myFloris.floris_wcent_wdiam_0.wakeDiametersT
print "wakeOverlapTRel: ", myFloris.floris_overlap_0.wakeOverlapTRel
wakeCentersYT = myFloris.floris_wcent_wdiam_0.wakeCentersYT
wakeDiametersT = myFloris.floris_wcent_wdiam_0.wakeDiametersT
wakeOverlapTRel = myFloris.floris_overlap_0.wakeOverlapTRel
FLORIScenters.append(list(wakeCentersYT))
FLORISdiameters.append(list(wakeDiametersT))
FLORISoverlap.append(list(wakeOverlapTRel))
# print prob['velocitiesTurbines0']
# print prob['wakeOverlapTRel'][6:]
FLORIScenters = np.array(FLORIScenters)
FLORISdiameters = np.array(FLORISdiameters)
FLORISoverlap = np.array(FLORISoverlap)
fig, axes = plt.subplots(ncols=2, nrows=2, sharey=False, sharex=False)
# plot wake center
axes[0, 0].plot(posrange/rotorDiameter, FLORIScenters[:,2], 'k', label='Wake Center')
# axes[0, 0].set_xlabel('x/D')
axes[0, 0].set_ylabel('Position')
axes[0, 0].legend(loc=1)
# plot wake diameters
axes[0, 1].plot(posrange/rotorDiameter, FLORISdiameters[:, 3*nTurbines+0]/rotorDiameter,
'b', label='Near Wake')
axes[0, 1].plot(posrange/rotorDiameter, FLORISdiameters[:, 3*nTurbines+nTurbines]/rotorDiameter,
'r', label='Far Wake')
axes[0, 1].plot(posrange/rotorDiameter, FLORISdiameters[:, 3*nTurbines+2*nTurbines]/rotorDiameter,
'y', label='Mixing Zone')
# axes[0, 1].set_xlabel('x/D')
axes[0, 1].set_ylabel('Wake Diameter / Rotor Diameter')
axes[0, 1].legend(loc=2)
axes[0, 1].set_ylim([-1., 5.])
# plot wake relative overlap
axes[1, 0].plot(posrange/rotorDiameter, FLORISoverlap[:, 3*nTurbines+0],
'b', label='Near Wake')
axes[1, 0].plot(posrange/rotorDiameter, FLORISoverlap[:, 3*nTurbines+nTurbines],
'r', label='Far Wake')
axes[1, 0].plot(posrange/rotorDiameter, FLORISoverlap[:, 3*nTurbines+2*nTurbines],
'y', label='Mixing Zone')
axes[1, 0].set_xlabel('x/D')
axes[1, 0].set_ylabel('Relative Overlap')
axes[1, 0].legend(loc=0)
axes[1, 0].set_ylim([-0.1, 1.1])
posrange = np.linspace(-3.*rotorDiameter, 7.*rotorDiameter, num=300)
yaw = np.array([0.0, 0.0])
wind_direction = 0.
myFloris.yaw = yaw
myFloris.windrose_directions = np.array([wind_direction])
FLORISpower = list()
for pos2 in posrange:
# assign values to yaw
myFloris.turbineX = np.array([0., 5*rotorDiameter])
myFloris.turbineY = np.array([0.0, pos2])
# run the problem at given conditions
myFloris.run()
# print np.sqrt((turbineY[0]-turbineY[1])**2+(turbineX[0]-turbineX[1])**2)/rotorDiameter # print downwind distance
FLORISpower.append(list(myFloris.floris_power_0.wt_power))
FLORISpower = np.array(FLORISpower)
axes[1, 1].plot(posrange/rotorDiameter, FLORISpower[:, 1], '#7CFC00')
axes[1, 1].set_xlabel('x/D')
axes[1, 1].set_ylabel('Power (kW)')
axes[1, 1].legend(loc=4)
if not plot_prefix == "":
plt.savefig(plot_prefix+"WakeProfile.pdf", bbox_extra_artists=(lgd,))#, bbox_inches='tight')
# plt.savefig("masterWakeProfile.pdf")
#####################
plt.show()
# if __name__ == "__main__":
# plt.show()
# else:
# plt.show(block=False)