-
Notifications
You must be signed in to change notification settings - Fork 91
/
9.Rmd
332 lines (244 loc) · 7.29 KB
/
9.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
---
title: "Chapter 9: Linear regression"
author: "Jesse Mu"
date: "November 2, 2016"
output:
html_document:
highlight: pygments
toc: yes
toc_float: yes
---
<!-- Setup -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "all"
}
}
});
</script>
```{r echo=FALSE, message=FALSE}
knitr::opts_chunk$set(fig.align = 'center', message = FALSE)
library(knitr)
library(ggplot2)
library(cowplot)
library(reshape)
```
<!-- Begin writing -->
# Exercises
## 9.1
```{r}
swim = read.table(url('http://www.stat.washington.edu/people/pdhoff/Book/Data/hwdata/swim.dat'))
```
To specify our prior, we let the prior expectation of our $y$-intercept to be
23, and we let the prior expectation of the effect of training week by week to
be 0, so $\boldsymbol{\beta} = (23, 0)^T$.
We expect no covariance with the $\beta$ coefficients, but we do have
uncertainty about our initial $\beta$ estimates. Specifically, to let 95% of our
uncertainty of the $y$-intercept to fall in $[22, 24]$, we let $\Sigma_{0(1, 1)} = 1/4$ (so that $\pm$ 2 standard deviations is $\pm$ 1).
We also expect that training has a relatively mild effect on time, so we let
$\Sigma_{0(2, 2)} = 0.1$ which is just an arbitrarily chosen small variance.
For our expectation of the variability of measurements, let's similarly set
$\sigma^2_0 = 1/4$ and only lightly center this prior with $\nu_0 = 1$.
```{r}
library(MASS) # mvrnorm
library(dplyr)
S = 5000
X = cbind(rep(1, 6), seq(1, 11, by = 2))
n = dim(X)[1]
p = dim(X)[2]
# Prior
beta0 = c(23, 0)
sigma0 = rbind(c(0.25, 0), c(0, 0.1))
nu0 = 1
s20 = 0.25
set.seed(1)
inv = solve
# For each swimmer, run linear regression gibbs sampling and obtain a posterior
# predictive distribution
swim_pred = apply(swim, MARGIN = 1, function(y) {
# Store samples
BETA = matrix(nrow = S, ncol = length(beta0))
SIGMA = numeric(S)
# Starting values - just use prior values?
beta = c(23, 0)
s2 = 0.7^2
# Gibbs sampling algorithm from 9.2.1
for (s in 1:S) {
# 1a) Compute V and m
V = inv(inv(sigma0) + (t(X) %*% X) / s2)
m = V %*% (inv(sigma0) %*% beta0 + (t(X) %*% y) / s2)
# 1b) sample beta
beta = mvrnorm(1, m, V)
# 2a) Compute SSR(beta) (specific formula from 9.1)
ssr = (t(y) %*% y) - (2 * t(beta) %*% t(X) %*% y) + (t(beta) %*% t(X) %*% X %*% beta)
# 2b) sample s2
s2 = 1 / rgamma(1, (nu0 + n) / 2, (nu0 * s20 + ssr) / 2)
BETA[s, ] = beta
SIGMA[s] = s2
}
# Now sample posterior predictive - two weeks later
xpred = c(1, 13)
YPRED = rnorm(S, BETA %*% xpred, sqrt(SIGMA))
YPRED
})
```
### b
```{r}
fastest_times = apply(swim_pred, MARGIN = 1, FUN = which.min)
table(fastest_times) / length(fastest_times)
```
We notice that with our posterior predictive dataset, swimmer 1 is the fastest
about 65% of the time by week 13, so we recommend that swimmer 1 race.
## 9.3
```{r}
crime = read.table(url('http://www.stat.washington.edu/people/pdhoff/Book/Data/hwdata/crime.dat'), header = TRUE)
```
### a
```{r}
y = crime$y
X = crime %>% select(-y) %>% as.matrix
n = dim(X)[1]
p = dim(X)[2]
g = n
nu0 = 2
s20 = 1
S = 1000
Hg = (g / (g + 1)) * X %*% inv(t(X) %*% X) %*% t(X)
SSRg = t(y) %*% (diag(1, nrow = n) - Hg) %*% y
s2 = 1 / rgamma(S, (nu0 + n) / 2, (nu0 * s20 + SSRg) / 2)
Vb = g * inv(t(X) %*% X) / (g + 1)
Eb = Vb %*% t(X) %*% y
E = matrix(rnorm(S * p, 0, sqrt(s2)), S, p)
beta = t(t(E %*% chol(Vb)) + c(Eb))
```
```{r}
library(tidyr)
signif = apply(beta, MARGIN = 2, FUN = quantile, probs = c(0.025, 0.5, 0.975)) %>%
apply(MARGIN = 2, FUN = function(y) !(y[1] < 0 && 0 < y[3]))
beta_df = as.data.frame(beta) %>%
gather(key = 'variable', val = 'coefficient') %>%
mutate(signif = signif[variable])
ggplot(beta_df, aes(x = variable, y = coefficient, color = signif)) +
stat_summary(fun.y = mean, fun.ymin = function(y) quantile(y, probs = c(0.025)), fun.ymax = function(y) quantile(y, probs = c(0.975))) +
geom_hline(yintercept = 0, lty = 2)
```
Looks like Ed (mean years of schooling), Ineq (Income inequality), M (percentage
of males aged 14-24), Prob (probability of imprisonment), and U2 (unemployment
rate of urban males 35-39).
### b
```{r}
y = crime$y
X = crime %>% select(-y) %>% as.matrix
set.seed(1) # Reproducible!
train_i = sample.int(length(y), size = round(length(y) / 2), replace = FALSE)
ytr = y[train_i]
Xtr = X[train_i, ]
yte = y[-train_i]
Xte = X[-train_i, ]
```
#### i
```{r}
# From 9.1
beta_ols = inv(t(Xtr) %*% Xtr) %*% t(Xtr) %*% ytr
beta_ols
y_ols = Xte %*% beta_ols
ols_df = data.frame(
observed = yte,
predicted = y_ols
)
ggplot(ols_df, aes(x = observed, y = predicted)) +
geom_point() +
geom_smooth(method = 'lm')
pred_error = sum((yte - y_ols)^2) / length(yte)
pred_error
```
#### ii
```{r}
y = ytr
X = Xtr
n = dim(X)[1]
p = dim(X)[2]
g = n
nu0 = 2
s20 = 1
S = 1000
Hg = (g / (g + 1)) * X %*% inv(t(X) %*% X) %*% t(X)
SSRg = t(y) %*% (diag(1, nrow = n) - Hg) %*% y
s2 = 1 / rgamma(S, (nu0 + n) / 2, (nu0 * s20 + SSRg) / 2)
Vb = g * inv(t(X) %*% X) / (g + 1)
Eb = Vb %*% t(X) %*% y
E = matrix(rnorm(S * p, 0, sqrt(s2)), S, p)
beta = t(t(E %*% chol(Vb)) + c(Eb))
beta_bayes = as.matrix(colMeans(beta))
y_bayes = Xte %*% beta_bayes
bayes_df = data.frame(
observed = yte,
predicted = y_bayes
)
ggplot(ols_df, aes(x = observed, y = predicted)) +
geom_point() +
geom_smooth(method = 'lm')
pred_error = sum((yte - y_bayes)^2) / length(yte)
pred_error
```
At least when the seed is 1, there doesn't appear to be a major difference
between the prediction errors.
### c
```{r}
# Unnecessary code repeating here. Clean this up later w/ functions
N = 100
set.seed(1)
pred_errors = t(sapply(1:N, function(i) {
y = crime$y
X = crime %>% select(-y) %>% as.matrix
train_i = sample.int(length(y), size = round(length(y) / 2), replace = FALSE)
ytr = y[train_i]
Xtr = X[train_i, ]
yte = y[-train_i]
Xte = X[-train_i, ]
# OLS
beta_ols = inv(t(Xtr) %*% Xtr) %*% t(Xtr) %*% ytr
beta_ols
y_ols = Xte %*% beta_ols
pred_error_ols = sum((yte - y_ols)^2) / length(yte)
# Bayes
y = ytr
X = Xtr
n = dim(X)[1]
p = dim(X)[2]
g = n
nu0 = 2
s20 = 1
S = 1000
Hg = (g / (g + 1)) * X %*% inv(t(X) %*% X) %*% t(X)
SSRg = t(y) %*% (diag(1, nrow = n) - Hg) %*% y
s2 = 1 / rgamma(S, (nu0 + n) / 2, (nu0 * s20 + SSRg) / 2)
Vb = g * inv(t(X) %*% X) / (g + 1)
Eb = Vb %*% t(X) %*% y
E = matrix(rnorm(S * p, 0, sqrt(s2)), S, p)
beta = t(t(E %*% chol(Vb)) + c(Eb))
beta_bayes = as.matrix(colMeans(beta))
y_bayes = Xte %*% beta_bayes
pred_error_bayes = sum((yte - y_bayes)^2) / length(yte)
c(pred_error_ols, pred_error_bayes)
})) %>% as.data.frame
colnames(pred_errors) = c('ols', 'bayes')
```
Here's a plot of the density of $\text{err}_{\text{Bayes}} -
\text{err}_{\text{ols}}$. If this is less than 0, then the Bayes estimator did
better than the OLS estimator:
```{r}
pred_diff = pred_errors %>% transmute(`bayes - ols` = bayes - ols)
ggplot(pred_diff, aes(x = `bayes - ols`)) +
geom_density() +
geom_vline(xintercept = 0, lty = 2)
```
Lastly,
```{r}
mean(pred_errors$bayes < pred_errors$ols)
```
For `N` samples, `r mean(pred_errors$bayes < pred_errors$ols) * 100`% of the
time, the predictive error using the Bayes estimators is less than the
predictive error using the OLS estimators. Nice!