-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
321 lines (259 loc) · 12.9 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
\documentclass{artikel3}
\usepackage{hyperref}
\usepackage{mathtools}
\usepackage{multicol}
\usepackage{esdiff}
\hypersetup{
colorlinks = true, %Colours links instead of ugly boxes
urlcolor = blue, %Colour for external hyperlinks
linkcolor = red, %Colour of internal links
citecolor = red %Colour of citations
}
\newcommand{\ddx}{\diff{}{x}}
\begin{document}
\title{Calculus BC Important Info Sheet}
\author{Transcribed to \LaTeX\ by Jack Ellert-Beck\\
Most information compiled by Dr.\ Olga Voronkova}
\maketitle
\newpage
\tableofcontents
\newpage
\part{Information}
\section{Functions}
\subsection{Even and Odd Functions}
A function $y=f(x)$ is \textbf{even} if $f(-x)=f(x)$ for every $x$
in the function's domain. Every even function is summertric about
the $y$-axis.
\[\text{Example:}\hspace{6 mm} {(-x)}^2=x^2 \]
A function $y=f(x)$ is \textbf{odd} if $f(x)=-f(x)$ for every $x$
in the function's domain. Every odd function is symmertric about
the origin.
\[\text{Example:}\hspace{6 mm} {(-x)}^3=-{(x)}^3 \]
\subsection{Periodicity}
A function $f(x)$ is \textbf{periodic} with period $p\hspace{2 mm}(p>0)$ if
$f(x+p)=f(x)$ for every value of $x$.
Sinusoids are examples of periodic functions. Specifically, the period
of the function $y=A\sin(Bx+C)$ or $y=A\cos(Bx+C)$ is $\frac{2\pi}{|B|}$.
The amplitude is $|A|$. The period of $y=\tan(x)$ is $\pi$.
\subsection{Composition of Functions}
Given two functions $f$ and $g$, the composite function
$f(g(x))$ can be written as $(f\circ g)(x)$. Note that
$f\circ g$ is not necessarily equal to $g\circ f$.
\subsection{Inverse Functions}
The inverse of a funtion $f(x)$ is often written as $f^{-1}(x)$, or given
a new name such as $g(x)$.
If $f$ and $g$ are two functions such that $f(g(x))=x$ for every $x$ in
the domain of $g$, and $g(f(x))=x$ for every $x$ in the domain of $f$, then
$f$ and $g$ are inverse functions of one another.
A function $f$ has an inverse if and only if no horizontal line intersects its graph more than once.
If $f$ is either increasing or decreasing in an interval, then $f$ has an inverse.
For information on the derivatives of inverse functions, see Section~\ref{dinv}.
\section{Limits}
\subsection{Definition of a Limit}
Let $f$ be a function defined on an open interval containing $c$
(except possibly at $c$) and let $L$ be a real number.
Then $\lim_{x \to c} f(x)=L$ means that for each $\varepsilon >0$
there exists a $\delta >0$ such that $|f(x)-L|<\varepsilon$ whenever
$0<|x-c|<\delta$.
\subsubsection{Symbolic Definitions of Limits}
\begin{itemize}
\item{Definition of a finite limit at a specific point:
\[ \lim_{x \to c}=L\Leftrightarrow (\forall\varepsilon >0, \exists\delta >0,
0<|x-c|<\delta \Rightarrow |f(x)-L|<\varepsilon)\]}
\item{Definition of an undefined limit at a specific point:
\[ \lim_{x \to c}=\infty\Leftrightarrow (\forall M>0, \exists\delta >0,
0<|x-c|<\delta\Rightarrow f(x)>M)\]
\[ \lim_{x \to c}=-\infty\Leftrightarrow (\forall M<0, \exists\delta >0,
0<|x-c|<\delta\Rightarrow f(x)<M)\]}
\item{Definition of a finite limit at infinity:
\[ \lim_{x \to \infty}=L\Leftrightarrow (\forall\varepsilon>0,\exists M,
x>M\Rightarrow|f(x)-L|<\varepsilon) \]
\[ \lim_{x \to -\infty}=L\Leftrightarrow (\forall\varepsilon>0,\exists M,
x<M\Rightarrow|f(x)-L|<\varepsilon) \]}
\end{itemize}
\subsection{Continuity}
A function $y=f(x)$ is \textbf{continuous} at $x=a$ if $f(a)$ exists,
$\displaystyle\lim_{x \to a}f(x)$ exists, and $\displaystyle\lim_{x \to a}f(x)=f(a)$.
$y=f(x)$ is continuous on $(a,b)$ if $f(x)$ is continuous for every
$x\in(a,b)$.
\subsection{Horizontal and Vertical Asymptotes}
A line $y=b$ is a \textbf{horizontal asymptote} of the graph of $y=f(x)$ if either\\*
$\displaystyle\lim_{x \to \infty}f(x)=b \text{ or} \lim_{x \to -\infty}f(x)=b$.
A line $x=a$ is a \textbf{vertical asymptote} of the graph of $y=f(x)$ if either\\*
$\displaystyle\lim_{x \to a^+}f(x)=\pm\infty \text{ or} \lim_{x \to a^-}f(x)=\pm\infty$.
\subsection{Evaluating Limits}
\subsubsection{Limits of Rational Functions as $x \to \pm\infty$}
\begin{itemize}
\item{$\displaystyle\lim_{x \to \pm\infty}\frac{f(x)}{g(x)}=0$ if the degree
of $f(x)$ is less than the degree of $g(x)$.
\[ \text{Example:}\hspace{6 mm}\lim_{x \to \infty}\frac{x^2-2x}{x^3+3}=0 \]}
\item{$\displaystyle\lim_{x \to \pm\infty}\frac{f(x)}{g(x)}$ is infinite if the degree
of $f(x)$ is greater than the degree of $g(x)$.
\[ \text{Example:}\hspace{6 mm}\lim_{x \to \infty}\frac{x^3+2x}{x^2-8}=\infty \]}
\item{$\displaystyle\lim_{x \to \pm\infty}\frac{f(x)}{g(x)}$ is finite if the degree
of $f(x)$ is equal to the degree of $g(x)$. The limit will be equal to the ratio of
the leading coefficients of $f(x)$ to $g(x)$.
\[ \text{Example:}\hspace{6 mm}\lim_{x \to \infty}\frac{2x^2-3x+2}{10x-5x^2}=-\frac{2}{5} \]}
\end{itemize}
\subsubsection{Remarkable Limits}
See The Later Section.
\subsection{Intermediate Value Theorem}
A function $y=f(x)$ that is continuous on a closed interval $[a,b]$ takes on
every value between $f(a)$ and $f(b)$.
As a more specific result, if $f$ is continuous on $[a,b]$ and $f(a)$ and $f(b)$
differ in sign, then the equation $f(x)=0$ has at least one solution
in the open interval $[a,b]$.
\section{Derivatives}
\subsection{Notation of Derivatives}
The derivative of the function $y=f(x)$ is commonly written as any of the following:
\[ f'(x)\hspace{6 mm}[f(x)]'\hspace{6 mm}y'\]
\[ \diff{y}{x}\hspace{6 mm}\ddx f(x) \]
Higher order derivatives can be written in a number of ways. Below are the
respective notations for second, fourth, and nth order derivatives in three different styles.
\[ \diff[2]{y}{x}\hspace{6 mm}\diff[4]{y}{x}\hspace{6 mm}\diff[n]{y}{x} \]
\[ f''(x)\hspace{6 mm}f^{IV}(x)\hspace{6 mm}f^{N}(x) \]
\[ f^{(2)}(x)\hspace{6 mm}f^{(4)}(x)\hspace{6 mm}f^{(n)}(x) \]
\subsection{Rate of Change}
If $(x_0,y_0)$ and $(x_1,y_1)$ are points on the graph of $y=f(x)$, then
the \textbf{average rate of change} of $y$ with respect to $x$ over
the interval $[x_0,x_1]$ is
\[ \frac{f(x_1)-f(x_0)}{x_1-x_0}=\frac{y_1-y_0}{x_1-x_0}=\frac{\Delta y}{\Delta x} \]
If $(x_0,y_0)$ is a point on the graph of $y=f(x)$, then the \textbf{instantaneous
rate of change} of $y$ with respect to $x$ at $x_0$ is $f'(x_0)$.
\subsection{Definition of a Derivative}
The derivative of a function $f(x)$ at the point $x=a$ can be defined in either of two ways:
\[ f'(a)=\lim_{h \to 0}\frac{f(a+h)-f(a)}{h} \]
\[ f'(a)=\lim_{b \to a}\frac{f(b)-f(a)}{b-a} \]
If this limit exists at $a$, then $f(x)$ is said to be \textbf{differentiable} at $a$.
If a function is differentiable at a point $x=a$, it is continuous at that point.
The converse is false, i.e.\ continuity does not imply differentiability.
\subsection{Derivatives of Inverse Functions}\label{dinv}
If $f$ is differentiable at every point on an interval $I$, and $f'(x)\neq 0$
on $I$, then $g=f^{-1}(x)$ is differentiable at every point of the interior of
the interval $f(I)$ and $g'(f(x))=\frac{1}{f'(x)}$.
\subsection{Finding Maxima and Minima}
To find the maximum and minimum values of a function $y=f(x)$, locate
\begin{enumerate}
\item{the points where $f'(x)$ is zero or where $f'(x)$ fails to exist}
\item{the end points, if any, on the domain of $f(x)$}
\end{enumerate}
These are the only candidates for the value of $x$ where where $f(x)$
may have a maximum or a minimum.
\subsection{Monotonicity}
Let $f$ be differentiable for $a<x<b$ and continuous for $a\leq x\leq b$.
\begin{enumerate}
\item{If $f'(x)>0$ for every $x$ in $(a,b)$, then $f$ is increasing on $[a,b]$.}
\item{If $f'(x)<0$ for every $x$ in $(a,b)$, then $f$ is decreasing on $[a,b]$.}
\end{enumerate}
\subsection{Concavity}
Suppose that $f''(x)$ exists on the interval $(a,b)$.
\begin{enumerate}
\item{If $f''(x)>0$ in $(a,b)$, then $f$ is concave upward in $(a,b)$.}
\item{If $f''(x)<0$ in $(a,b)$, then $f$ is concave downward in $(a,b)$.}
\end{enumerate}
To locate the points of inflection of $y=f(x)$, find the points where
$f''(x)=0$ or where $f''(x)$ fails to exist. These are the only candidates where
$f(x)$ may have a point of inflection. Then test these points to make sure that
$f''(x)<0$ on one side and $f''(x)>0$ on the other.
\subsection{Evaluating Derivatives}
For more details on evaluating derivatives of specific functions, see the later section.
The derivative of any constant function is $0$.
\[ \ddx a=0 \]
Constant coefficients can be factored out of derivatives.
\[ \ddx Af(x)=A\ddx f(x) \]
The derivative of a sum is the sum of the derivatives.
\[ \ddx [f(x)+g(x)]=\ddx f(x)+\ddx g(x) \]
\subsubsection{Power Rule}
\[ \ddx x^n=nx^{n-1} \]
\subsubsection{Product Rule}
\[ \ddx f\cdot g=f\cdot g'+g\cdot f' \]
\subsubsection{Quotient Rule}
\[ \ddx \frac{f}{g}=\frac{g\cdot f'-f\cdot g'}{g^2} \]
\subsubsection{Chain Rule}
The derivative of a composite function with respect to $x$ is equal to the derivative
of the product of the derivative of the outer function with respect to the inner
function and the derivative of the inner function.
\[ \ddx f(g(x))=f'(g(x))\cdot g'(x) \]
\subsubsection{Implicit Differentiation}
When an equation in $y$ and $x$ is not written in the form $y=f(x)$, we say the
function is defined implicitly. To differentiate an implicit function,
\begin{enumerate}
\item{From the given equation construct a function $F(x,y)=0$}
\item{Use the formula
\[ \diff{y}{x}=-\frac{\diffp{F}{x}}{\diffp{F}{y}}=-\frac{F_x}{F_y} \]
In the numerator, differentiate $F$ with respect to $x$, treating $y$ as constant,
and in the denominator, differentiate $F$ with respect to $y$, treating $x$ as constant.}
\end{enumerate}
Example: Find $\diff{y}{x}$ of $y=x^2+3\sin y$.
\[ F(x,y)=y-x^2-3\sin y=0 \]
\begin{align*}
\diff{y}{x}=-\frac{F_x}{F_y} &= -\frac{-2x}{1-3\cos y}\\
&= \frac{2x}{1-3\cos y}
\end{align*}
\subsection{Rolle's Theorem}
If $f$ is continuous on $[a,b]$ and differentiable on $(a.b)$ such that
$f(a)=f(b)$, then there is at least one number $c$ in the open interval
$(a,b)$ such that $f'(c)=0$.
Note that this is a special case of the Mean Value Theorem.
\subsection{Mean Value Theorem}
If $f$ is continuous on $[a,b]$ and differentiable on $(a,b)$, then there
is at least one number $c$ in $(a,b)$ such that
\[ \frac{f(b)-f(a)}{b-a}=f'(c)\Rightarrow f(b)-f(a)=f'(c)(b-a) \]
\subsection{Extreme Value Theorem}
If $f$ is continuous on $[a,b]$, then $f(x)$ has both a maximum and
a minimum on $[a,b]$.
\subsection{Linear Approximation}
The linear approximation to $f(x)$ near $x=x_0$ is given by
\[ y=f(x_0)+f'(x_0)(x-x_0) \]
for $x$ sufficiently close to $x_0$.
\subsection{Newton's Method}
Let $f$ be a differentiable function and suppose $r$ is a real zero of $f$.
If $x_n$ is an approximation to $r$, then the next approximation $x_{n+1}$
is given by
\[ x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)} \]
provided $f'(x_n)\neq 0$. Successive approximations can be found using this method.
\subsection{L'H\^{o}pital's Rule}
If $\displaystyle\lim_{x \to a}\frac{f(x)}{g(x)}$ is of the form $\frac{0}{0}$
or $\frac{\infty}{\infty}$, and if
$\displaystyle\lim_{x \to a}\frac{f'(x)}{g'(x)}$ exists, then
\[ \lim_{x \to a}\frac{f(x)}{g(x)}=\lim_{x \to a}\frac{f'(x)}{g'(x)} \]
\section{Integrals}
\subsection{Area Approximation Methods}
There are a few similar ways to approximate the area under a curve.
They all involve dividing the total area into smaller sections which approximate
the shape of the enclosed region but which have easily computable areas.
The interval on the $x$-axis $[a,b]$ is typically divided into $n$ subintervals,
each with length $\frac{b-a}{n}=\Delta x$.
\subsubsection{Left Riemann Sum}
\begin{align*}
\mathrm{Area} &\approx \Delta xf(a)+\Delta xf(a+\Delta x)+\Delta xf(a+2\Delta x)
+\ldots+\Delta xf(b-\Delta x)\\
&\approx \Delta x[f(a)+f(a+\Delta x)+f(a+2\Delta x)+\ldots+f(b-\Delta x)]\\
&\approx \Delta x \sum_{k=0}^{n-1} f(a+k\Delta x)
\end{align*}
This approximation will be an underestimation if $f$ is strictly increasing
on $[a, b]$, and an overestimation if $f$ is strictly decreasing.
\subsubsection{Right Riemann Sum}
\begin{align*}
\mathrm{Area} &\approx \Delta xf(a+\Delta x)+\Delta xf(a+2\Delta x)
+\ldots+\Delta xf(b)\\
&\approx \Delta x[f(a+\Delta x)+f(a+2\Delta x)+\ldots+f(b)]\\
&\approx \Delta x \sum_{k=1}^{n} f(a+k\Delta x)
\end{align*}
This approximation will be an overestimation if $f$ is strictly increasing
on $[a, b]$, and an underestimation if $f$ is strictly decreasing.
\subsubsection{Midpoint Rule}
\begin{align*}
\mathrm{Area} &\approx \Delta xf\left ( a+\frac{\Delta x}{2}\right )
+\Delta xf\left ( a+\frac{3\Delta x}{2}\right ) +\ldots
+\Delta xf\left ( b-\frac{\Delta x}{2}\right )\\
&\approx \Delta x\left [ f\left ( a+\frac{\Delta x}{2}\right )
+f\left ( a+\frac{3\Delta x}{2}\right )+\ldots
+f\left ( b-\frac{\Delta x}{2}\right )\right ]\\
&\approx \Delta x \sum_{k=1}^{n} f\left ( a+\frac{(2n-1)\Delta x}{2} \right )
\end{align*}
\subsubsection{Trapezoidal Rule}
\[ \mathrm{Area} \approx \]
\subsection{Definition of the Definite Integral as the Limit of a Sum}
Lorem Ipsum
\end{document}