-
Notifications
You must be signed in to change notification settings - Fork 0
/
Pickling_and_Scaling_p6.py
71 lines (51 loc) · 1.71 KB
/
Pickling_and_Scaling_p6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas as pd
import quandl, math, datetime
import numpy as np
from sklearn import preprocessing, cross_validation, svm
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from matplotlib import style
import pickle
style.use('ggplot')
df = quandl.get('WIKI/GOOGL')
df = df[['Adj. Open','Adj. High','Adj. Low','Adj. Close','Adj. Volume']]
df['HL_PCT']=(df['Adj. High']-df['Adj. Close'])/df['Adj. Close']*100
df['PCT_change']=(df['Adj. Close']-df['Adj. Open'])/df['Adj. Open']*100
df=df[['Adj. Close','HL_PCT','PCT_change','Adj. Volume']]
forecast_col='Adj. Close'
df.fillna(-99999,inplace=True)
forecast_out=int(math.ceil(0.1*len(df)))
#print(forecast_out)
df['label']=df[forecast_col].shift(-forecast_out)
X=np.array(df.drop(['label'],1))
X=preprocessing.scale(X)
X_lately=X[-forecast_out:]
X=X[:-forecast_out]
df.dropna(inplace=True)
y=np.array(df['label'])
X_train, X_test, y_train, y_test=cross_validation.train_test_split(X,y,test_size=0.2)
# clf=LinearRegression(n_jobs=-1)
# clf.fit(X_train,y_train)
# with open('linearregression.pickle','wb') as f:
# pickle.dump(clf,f)
pickle_in=open('linearregression.pickle','rb')
clf=pickle.load(pickle_in)
accuracy=clf.score(X_test,y_test)
forecast_set=clf.predict(X_lately)
print(forecast_set,accuracy,forecast_out)
df['Forecast']=np.nan
last_date=df.iloc[-1].name
last_unix=last_date.timestamp()
one_day=86400
next_unix=last_unix+one_day
for i in forecast_set:
next_date=datetime.datetime.fromtimestamp(next_unix)
next_unix +=one_day
df.loc[next_date]=[np.nan for _ in range(len(df.columns)-1)]+[i]
print(df.tail())
df['Adj. Close'].plot()
df['Forecast'].plot()
plt.legend(loc=4)
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()