-
Notifications
You must be signed in to change notification settings - Fork 0
/
para.cfg
870 lines (767 loc) · 21.9 KB
/
para.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
//-----------------------------------------------------
// LCM parameter configuration file
//
// Citation:
// Du J, Vegh V, Reutens DC (2012)
// PLoS Comput Biol 8(10): e102733
// NeuroImage 94: 1-11
//-----------------------------------------------------
//
// Formats:
// 1. comments: use C++-style comments. Any content after "//"
// until the end of the line will be ignored.
//
// 2. Specify the value of parameters using the following format
// name_of_parameter = value;
// the semicolon is mandatory.
//
// 3. Parameter name and value is case insensitive.
//
// 4. All parameters must start with one of the following prefix
// "LCM", "LAYER", "NEURON", "STIM", "SOURCE", "SYNAPSE", "RECEPTOR"
//
// 5. Parameters of the same object can be grouped, for example
// Neuron.E1 {
// Para1 = 111;
// Para2 = 2222;
// };
//
// is equivalent to
//
// Neuron.E1.Para1 = 111;
// Neuron.E1.Para2 = 222;
//
// the ";" after the "}" is mandatory.
//
// 6. There is a special object named "global" in each class. The "global"
// indicator represents all objects in the class. For example,
// Neuron.global.para1 = 111;
// will set "para1" of all neuron groups to 111.
//
// 7. The names of objects (e.g. neuron groups, layers, and so on)
// cannot contain space (including tabs), comma (,), semicoma (;),
// dot (.), or double slash (//). Names containing these special
// characters will result in undefined behaviours.
//
// 8. The following terms have special meanings, so please do not used for
// object name:
// "neuron", "layer", "group", "global" and "source"
//
// ------------------- set parameter below -------------------------
//------------------------------------------------
// Define global simulation parameters
//
// 3 parameters are defined here:
// OUTPUT_TIME: the period of simulation time (not real time) whose
// voltage data of neuron groups will be saved to file (msec)
// RAND_SEED: the seed for random generator (integer, optional)
// THREAD_NUM: number of thread created by the program (integer, optional)
//
// *****
// The RAND_SEED parameter is optional, assumed to be zero if not specified.
// if RAND_SEED = 0, the seed will generated from real time clock (different value for each run)
// if RAND_SEED > 0, it will be used for random generator seed (the same value for all runs)
// for statistical analysis, set rand_seed to 0
//
// The OUTPUT_TIME parameter must be set in the format of "BEGIN_TIME:INTERVAL:END_TIME".
// For example,
// OUTPUT_TIME = {1000:1:2000};
// will instruct the program to save the voltage data between t=1 sec and t=2 sec
// at the interval of 1 ms. Multiple output time windows may be specified, like
// OUTPUT_TIME = {1000:1:2000, 3000:1:4000};
// The coma and semicolon is mandatory
//
// The THREAD_NUM parameter is optional, assume to be zero if not specified.
// if THREAD_NUM = 0 the number will be got from omp_get_num_procs(), which is usually equal
// to the number of available processors/cores in the system.
// if THREAD_NUM > 0 the program will run on the sepcified number of threads
// if the specified value is greater than the value returned by omp_get_num_procs(),
// it will be set to the value returned omp_get_num_procs()
//------------------------------------------------
SIMU {
OUTPUT_TIME = {9881:1:15000, 24881:1:30000};
RAND_SEED = 0;
THREAD_NUM = 0;
};
//------------------------------------------------
// Define global simulation parameters
//
// 4 parameters are defined here:
// SIZE: the size of the simulated cortical region (mm)
// SIDE_GRID: the number of grid in each side
// SIMU_TIME: total evolution time for the simulation (msec)
// TIME_STEP: the time step size (msec)
//
//------------------------------------------------
//
//the diameter of a cortical millicolumn varies
//acceptable value for cat is 50-70 um
// (Feldman and Peter, (1974) Brain Res, 77:56)
//
LCM {
SIZE = 1.2; // mm, simulate a 1.2mm x 1.2mm cortical area
SIDE_GRID = 20; // divide the area to 20 x 20 grid
SIMU_TIME = 30000; // total simulation time = 20 sec
TIME_STEP = 0.5; // msec, time step = 0.5 msec
};
//-----------------------------------------------
// Define cortical layers
// A list of cortical layers separated using comma(,)
// and embraced with a pair of curly brackets({})
//-----------------------------------------------
//Cortical layers L1 L2/3 L4 L5 L6
//TN: Thalamus Nucleis, special layer
LAYER = {L1, L2/3, L4, L5, L6, TN};
//-----------------------------------------------
// Set parameters for each cortical layer
//
// Two parameters are defined for each cortical layer
// UPPER_BOUND: the upper bound of the cortical layer (mm)
// LOWER_BOUND: the lower bound of the cortical layer (mm)
//
// Both the parameters need to be set.
//
// The boundary of all cortical layers should not overlap
// but do not need to be adjacent
//
// These parameters are only used to control AP and PSP
// propagation delays
//
// Unit of measurement: millimeters
//-----------------------------------------------
//Data source: Beaulieu and Colonnier, 1983 J.Comp Neurol, 217(3), 337?44.
//
LAYER.L1 {
UPPER_BOUND = 0; // mm, the upper bound of the layer
LOWER_BOUND = 0.166; // mm, the lower bound
};
LAYER.L2/3 {
UPPER_BOUND = 0.166; // mm
LOWER_BOUND = 0.631; // mm
};
LAYER.L4 {
UPPER_BOUND = 0.631; // mm
LOWER_BOUND = 1.141; // mm
};
LAYER.L5 {
UPPER_BOUND = 1.141; // mm
LOWER_BOUND = 1.278; // mm
};
LAYER.L6 {
UPPER_BOUND = 1.278; // mm
LOWER_BOUND = 1.622; // mm
};
//the distance from thalamus to cortex is about 20 mm
LAYER.TN {
UPPER_BOUND = 20.; // mm
LOWER_BOUND = 22.; // mm
};
//-----------------------------------------------
// Define neuron groups
// A list of neuron groups separated using comma(,)
// and embraced with a pair of curly brackets({}).
//
//-----------------------------------------------
NEURON = {E1, I1, P2/3, I2/3, P4, SS4, I4, P5, I5, P6, I6, IRTN, PLGN, ILGN};
//-----------------------------------------------
// Set parameters for each neuron group defined above
//
// 10 parameters are defined for each neuron group:
// LAYER: which layer the neuron group is located
//
// TYPE: excitatory(EXCIT) or inhibitory(INHIB) neuron
//
// DENSITY: neuron density (per 1 mm^2 cortex)
// this parameter is only used to calculate LFP
//
// V_0: resting membrane potential (mV)
//
// V_REV: reverse membrane potential (mV)
//
// SPK_SPEED: spike propagation speed (mm/msec)
//
// PSP_SPEED: psp propagation speed (mm/msec)
//
// PSP_DECAY: psp decay factor (mm-1)
//
// FIRE_GAIN: firing gain (base on mV for membrane potential)
//
// FIRE_VHMF: voltage at half maximum firing (mV)
//
// SYNP_SIGMA: the sigma of synapse distribution (mm)
//
// TAU_MBN: time constant of the membrane (mm)
//
// All the parameter need to be set.
//
// The program will not accept unreasonable parameter value
//-----------------------------------------------
//parameter for all neuron group
NEURON.GLOBAL {
V_0 = -65; // mV, Source: Carandini and Ferster 2000 J Neurosci, 20: 470
SPK_SPEED = 1.0; // mm/msec Source: for example, Swadlow 1994 J Neurophysiol 71:437
PSP_SPEED = 0.2; // mm/msec Source: Stuart and Sakmann Nature 367: 69 Fig 2
PSP_DECAY = 1.6; // mm Source: Stuart and Sakmann Nature 367: 69 Fig 1
TAU_MBN = 20; //www.neuroelectro.org
};
//excitatory in layer 1
NEURON.E1 {
LAYER = L1;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 36;
//source: Hansel and Vreeswijk J Neurosci 22(12): 5118
FIRE_GAIN = 0.33;
//souce: Hansel and Vreeswijk J Neurosci 22(12): 5118
// Priebe et al Nat Neurosci 7(10): 1113
FIRE_VHMF = -45.;
//empirical value, consistent with Wright (2009) Neural Netw 22:373
FIRE_MAX = 100;
//the value is 40-60 um in rat (source Song et al Plos Bio 3(10):e350 Fig 3)
//we assume the value is slightly large in cat, because it has a large visual cortex
SYNP_SIGMA = 0.08; //mm
};
//inhibitory neuron in layer 1
NEURON.I1 {
LAYER = L1;
TYPE = INHIB;
V_REV = -70;
DENSITY = 1177;
//this is set to 2.5 times of the fire gain of pyramidal neuron
//the firing ability of fast spiking interneuron is proximately 2.5 times of
// regular spiking pyramidal neuron
//source: Nowak et al, J Neurophysiol, 89: 1541.
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
//empirical value, consistent with Wright (2009) Neural Netw 22:373
FIRE_MAX = 200;
// the value is set to half of the value of pyramidal neuron
// to account for the notion that inhib neurons usually have more
// localised connection
SYNP_SIGMA = 0.04; //mm
};
//pyramidal neuron in layer 2/3
NEURON.P2/3 {
LAYER = L2/3;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 20394;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 100;
SYNP_SIGMA = 0.08;
};
//inhibitory neuron in layer 2/3
NEURON.I2/3 {
LAYER = L2/3;
TYPE = INHIB;
V_REV = -70;
DENSITY = 5726;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//spiny stellate neuron in layer 4
NEURON.SS4 {
LAYER = L4;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 14433;
//the firing capability of SS4 is similar to pyramidal neuron
//source: Nowaki et al, J Neurophysiol, 89: 1541-66.
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 100;
// use the same value as inhib interneurons because
// spiny stellar neuron also have localised connections
SYNP_SIGMA = 0.04;
};
//pyramidal neuron in layer 4
NEURON.P4 {
LAYER = L4;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 7216;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 100;
SYNP_SIGMA = 0.08;
};
//inhibitory neuron in layer 4
NEURON.I4 {
LAYER = L4;
TYPE = INHIB;
V_REV = -70;
DENSITY = 5412;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//pyramidal neuron in layer 5
NEURON.P5 {
LAYER = L5;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 4785;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 100;
SYNP_SIGMA = 0.08;
};
//Inhibitory neuron in layer 5
NEURON.I5 {
LAYER = L5;
TYPE = INHIB;
V_REV = -70;
DENSITY = 1098;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//Pyramidal neuron in layer 6
NEURON.P6 {
LAYER = L6;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 14198;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 100;
SYNP_SIGMA = 0.08;
};
//Inhibitory neuron in layer 6
NEURON.I6 {
LAYER = L6;
TYPE = INHIB;
V_REV = -70;
DENSITY = 3138;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45.;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//Interneuron in Reticular nucleus of thalamus
NEURON.IRTN {
LAYER = TN;
TYPE = INHIB;
V_REV = -70;
DENSITY = 1000;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//Thalaimo-cortial relay cell in LGN
NEURON.PLGN {
LAYER = TN;
TYPE = EXCIT;
V_REV = 0;
DENSITY = 1000;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45;
FIRE_MAX = 100;
SYNP_SIGMA = 0.08;
};
NEURON.ILGN {
LAYER = TN;
TYPE = INHIB;
V_REV = -70;
DENSITY = 1000;
FIRE_GAIN = 0.33;
FIRE_VHMF = -45;
FIRE_MAX = 200;
SYNP_SIGMA = 0.04;
};
//-----------------------------------------------
// Define receptors
// A list of receptors separate using comma (,)
// embraced with a pair of curly bracket ({})
//
//-----------------------------------------------
RECEPTOR = {AMPA, NMDA, GABA};
//-----------------------------------------------
// Set parameters for each receptor defined above
//
// 5 parameters are defined for each receptor
// g0: synaptic gain (mV/(spike/sec) == mV/Hz)
// lambda: the receptor adaptation factor
// delay: neurotransmitter diffusion delay
// alpha and N: parameter for the gamma function
// that defines the PSP time course
//
// All the 5 parameters need to be set
//-----------------------------------------------
//AMPA
RECEPTOR.AMPA {
TYPE = EXCIT;
G0 = 28.00E-6; //synaptic gain for AMPA receptor
LAMBDA = 0.012;
DELAY = 0.38;
// the 10-90% rise time = 2.5 ms
//width at half-maximum = 15 ms
//source: Thomson et al (1993) J Neurophysiol 70: 2354
TAU_RISE = 2.6; // corresponding to rise_time = 1.12
TAU_FALL = 13;
};
//NMDA
RECEPTOR.NMDA {
TYPE = EXCIT;
G0 = 28.00E-6; //synaptic gain for NMDA receptor
LAMBDA = 0.037;
DELAY = 0.38; //ms
//10-90% rise time = 8 ms
//width at half-maximum = 60 ms
//source : Hestrin et al 1990 J Physiol 422(1): 203
TAU_RISE = 6.6; //ms
TAU_FALL = 60; //ms
};
//GABA
RECEPTOR.GABA {
TYPE = INHIB;
G0 = -15.00E-6; //synaptic gain for GABA receptor
LAMBDA = 0.005;
DELAY = 0.9;
//10-90% rise time = 2.7 ms
//width at half-maximum = 15 ms
//source: THomson and Deuches 1997 Cerebral Cortex 7(6):510
TAU_RISE = 3;
TAU_FALL = 12.5;
};
//-----------------------------------------------
// Defined external spike sources
// A list of external spike source separate using comma (,)
// embraced with a pair of curly bracket ({})
//
// A external spike source is a source of afferent spikes
// projecting from external region into the cortical area.
//
// No parameter need to be set for the external source.
// The synaptic connection is defined in a separate section.
//
//-----------------------------------------------
SOURCE = {CC, SI};
//CC is the spikes projecting from other cortical regions
//SI is the sensory input to the LGN
//-----------------------------------------------
// Defined the external stimulator,
// A list of stimulators separate using comma (,)
// embraced with a pair of curly bracket ({})
//
// A stimulator is a spike generator that attached to
// a external source spike source
//
//-----------------------------------------------
//background spontaneous input or visual stimulation, separated using ',', don't use quotes
STIM = {NOISE, NOSTIM, VISUAL};
//-----------------------------------------------
// Set parameters for each stimulator defined above
//
// Currently, three types of stimulators are implemented
//
// 1. mode=0: a low-frequency unsynchronised white noise
// This type of stimulator generates white-noise shape spike rates,
// and the spike rates projecting to all elements are independent, i.e
// each element has its own stimulator with the same parameter values
// and different random number sequence.
//
// paramters:
// amplitude: stimulation amplitude, see below (spike/sec)
// period: low-pass filter window size (sec)
// the filtering operation is
// y(idx) = r*x + (1-r)*y(idx-1)
// where "y(idx-1)" and "y(idx)" are the generated value at the
// last step and this step, respectively; and x is a gaussian random
// number generated with mean = 0 and sigma = "amplitude",
// the "amplitude" is the parameter mentioned above;
// "r" is a parameter controlling the cutoff frequency, and its value
// is calculated via
// r = "time_step"/"period"
//
// the output spike rate of the stimulator is determined by
// output = y(idx) if y(idx)>=0,
// = 0 if y(idx)<0
//
// 2. mode=1: a recurent Gaussian peaks
// This type of stimulator generates spike rates with recurrent
// Gaussian shape. The spike rates projecting to all elements are synchronized, i.e
// they are the same at a time.
//
// parameter
// amplitude: amplitude of spike rates (spike/sec)
// default value : st_period/12.0;
// period: period of the spike rates (sec)
//
//
// 3. mode=2: a low-frequency synchronised white noise
// Similar to the mode 0, but the spike rates projecting to all elements are synchronised.
//
// other parameters:
// st_stop and st_stop: the time points when the stimulator starts and stops
// source: name of external source that the stimulator is attached to
// elements: elements that the stimulator projects to
//--------------------------------------------------
//parameter for all stimulators
STIM.GLOBAL {
ELEMENT = {0-399}; //applied to all columns
UPDATE_INTERVAL = 5; //msec
};
//background noise from corti-cortical area
STIM.NOISE {
MODE = 0;
SOURCE = CC;
AMPLITUDE = 1.;
PERIOD = 50.; // msec, low pass filter window size
START = 0; // msec
STOP = 30000; // msec
};
//general background input without specific stimulation
STIM.NOSTIM {
MODE = 2;
SOURCE = SI;
AMPLITUDE = 1.;
PERIOD = 50.; // msec
START = 0; // msec
STOP = 15000; // msec
};
//visual stimulation
STIM.VISUAL {
MODE = 2;
SOURCE = SI;
AMPLITUDE = 50.;
PERIOD = 20.; // msec
START = 15000; // msec
STOP = 30000; // msec
};
//--------------------------------------------------
// define synaptic connections
//
// Please use the following format:
// synapse.presynp.postsynp.ly = num;
// which specify the synapse number in layer "ly"
// projecting from neuron "presyn" to neuron "postsynp"
// or
// synapse.presynp.postsynp = {num_for_first_layer, num_for_second_layer, ...};
// which specify the synaptic number from presynp to postsynp in all layers
//--------------------------------------------------
// most of the synaptic numbers were driven from
// Izhikevich and Edelman 2008 PNAS 105:3593 (Figure 9)
// and Binzegger Douglas and Martin 2009 J Neurosci 24: 8441 (Figure 7 & 8)
SYNAPSE {
E1.E1.L1 = 907;
I1.E1.L1 = 1600;
P2/3.E1.L1 = 907;
I2/3.E1.L1 = 160;
PLGN.E1.L1 = 408;
CC.E1.L1 = 7752;
E1.I1.L1 = 73;
I1.I1.L1 = 898;
P2/3.I1.L1 = 560;
I2/3.I1.L1 = 151;
//P4.I1.L1 = 9;
//P5.I1.L1 = 9;
PLGN.I1.L1 = 364;
CC.I1.L1 = 6899;
I1.P2/3.L1 = 133;
P2/3.P2/3.L1 = 82;
I2/3.P2/3.L1 = 16;
//P4.P2/3.L1 = 1;
//P5.P2/3.L1 = 1;
PLGN.P2/3.L1 = 54;
CC.P2/3.L1 = 1019;
P2/3.P2/3.L2/3 = 3474;
I2/3.P2/3.L2/3 = 783;
P4.P2/3.L2/3 = 447;
SS4.P2/3.L2/3 = 435;
I4.P2/3.L2/3 = 46;
P5.P2/3.L2/3 = 429;
P6.P2/3.L2/3 = 133;
I6.P2/3.L2/3 = 46;
I1.I2/3.L2/3 = 54;
P2/3.I2/3.L2/3 = 1769;
I2/3.I2/3.L2/3 = 509;
P4.I2/3.L2/3 = 226;
SS4.I2/3.L2/3 = 217;
I4.I2/3.L2/3 = 28;
P5.I2/3.L2/3 = 215;
P6.I2/3.L2/3 = 69;
I6.I2/3.L2/3 = 23;
PLGN.I2/3.L2/3 = 22;
CC.I2/3.L2/3 = 408;
I1.P4.L1 = 82;
P2/3.P4.L1 = 51;
I2/3.P4.L1 = 10;
//P4.P4.L1 = 1;
//P5.P4.L1 = 1;
PLGN.P4.L1 = 33;
CC.P4.L1 = 629;
P2/3.P4.L2/3 = 546;
I2/3.P4.L2/3 = 80;
P4.P4.L2/3 = 70;
SS4.P4.L2/3 = 68;
//I4.P4.L2/3 = 5;
P5.P4.L2/3 = 68;
P6.P4.L2/3 = 22;
//I6.P4.L2/3 = 7;
P2/3.P4.L4 = 216;
I2/3.P4.L4 = 40;
P4.P4.L4 = 211;
SS4.P4.L4 = 760;
I4.P4.L4 = 468;
P5.P4.L4 = 65;
P6.P4.L4 = 1585;
I6.P4.L4 = 297;
PLGN.P4.L4 = 151;
CC.P4.L4 = 1233;
P2/3.SS4.L4 = 218;
I2/3.SS4.L4 = 53;
P4.SS4.L4 = 226;
SS4.SS4.L4 = 828;
I4.SS4.L4 = 496;
P5.SS4.L4 = 56;
P6.SS4.L4 = 1723;
I6.SS4.L4 = 305;
PLGN.SS4.L4 = 162;
CC.SS4.L4 = 1329;
P2/3.I4.L4 = 168;
I2/3.I4.L4 = 39;
P4.I4.L4 = 138;
SS4.I4.L4 = 497;
I4.I4.L4 = 357;
P5.I4.L4 = 35;
P6.I4.L4 = 1024;
I6.I4.L4 = 182;
PLGN.I4.L4 = 95;
CC.I4.L4 = 789;
I1.P5.L1 = 138;
P2/3.P5.L1 = 85;
I2/3.P5.L1 = 16;
//P4.P5.L1 = 1;
//P5.P5.L1 = 1;
PLGN.P5.L1 = 55;
CC.P5.L1 = 1054;
P2/3.P5.L2/3 = 388;
I2/3.P5.L2/3 = 57;
P4.P5.L2/3 = 50;
SS4.P5.L2/3 = 48;
//I4.P5.L2/3 = 4;
P5.P5.L2/3 = 48;
P6.P5.L2/3 = 15;
//I6.P5.L2/3 = 5;
P2/3.P5.L4 = 12;
//I2/3.P5.L4 = 3;
P4.P5.L4 = 18;
SS4.P5.L4 = 68;
I4.P5.L4 = 28;
//P5.P5.L4 = 4;
P6.P5.L4 = 143;
I6.P5.L4 = 25;
PLGN.P5.L4 = 14;
CC.P5.L4 = 110;
P2/3.P5.L5 = 2040;
I2/3.P5.L5 = 92;
P4.P5.L5 = 334;
SS4.P5.L5 = 237;
I4.P5.L5 = 39;
P5.P5.L5 = 567;
I5.P5.L5 = 85;
P6.P5.L5 = 202;
I6.P5.L5 = 517;
PLGN.P5.L5 = 25;
CC.P5.L5 = 345;
P2/3.I5.L5 = 1356;
I2/3.I5.L5 = 75;
P4.I5.L5 = 224;
SS4.I5.L5 = 158;
I4.I5.L5 = 33;
P5.I5.L5 = 376;
I5.I5.L5 = 66;
P6.I5.L5 = 128;
I6.I5.L5 = 340;
PLGN.I5.L5 = 15;
CC.I5.L5 = 215;
//I1.P6.L1 = 6;
//P2/3.P6.L1 = 4;
//I2/3.P6.L1 = 1;
//PLGN.P6.L1 = 3;
CC.P6.L1 = 48;
P2/3.P6.L2/3 = 102;
I2/3.P6.L2/3 = 15;
P4.P6.L2/3 = 13;
SS4.P6.L2/3 = 13;
//I4.P6.L2/3 = 1;
P5.P6.L2/3 = 13;
//P6.P6.L2/3 = 4;
//I6.P6.L2/3 = 1;
P2/3.P6.L4 = 42;
I2/3.P6.L4 = 12;
P4.P6.L4 = 63;
SS4.P6.L4 = 240;
I4.P6.L4 = 100;
P5.P6.L4 = 13;
P6.P6.L4 = 505;
I6.P6.L4 = 88;
PLGN.P6.L4 = 48;
CC.P6.L4 = 390;
P2/3.P6.L5 = 405;
I2/3.P6.L5 = 10;
P4.P6.L5 = 67;
SS4.P6.L5 = 48;
//I4.P6.L5 = 5;
P5.P6.L5 = 112;
I5.P6.L5 = 12;
P6.P6.L5 = 38;
I6.P6.L5 = 101;
//PLGN.P6.L5 = 4;
CC.P6.L5 = 64;
P2/3.P6.L6 = 96;
//I2/3.P6.L6 = 8;
P4.P6.L6 = 50;
SS4.P6.L6 = 61;
//I4.P6.L6 = 4;
P5.P6.L6 = 192;
I5.P6.L6 = 12;
P6.P6.L6 = 552;
I6.P6.L6 = 593;
PLGN.P6.L6 = 134;
CC.P6.L6 = 2137;
P2/3.I6.L5 = 1356;
I2/3.I6.L5 = 75;
P4.I6.L5 = 224;
SS4.I6.L5 = 158;
I4.I6.L5 = 33;
P5.I6.L5 = 376;
I5.I6.L5 = 66;
P6.I6.L5 = 128;
I6.I6.L5 = 340;
PLGN.I6.L5 = 15;
CC.I6.L5 = 215;
P2/3.I6.L6 = 81;
//I2/3.I6.L6 = 6;
P4.I6.L6 = 42;
SS4.I6.L6 = 52;
//I4.I6.L6 = 3;
P5.I6.L6 = 161;
I5.I6.L6 = 13;
P6.I6.L6 = 464;
I6.I6.L6 = 496;
PLGN.I6.L6 = 113;
CC.I6.L6 = 1794;
P6.IRTN.TN = 1200;
IRTN.IRTN.TN = 400;
PLGN.IRTN.TN = 800;
P5.PLGN.TN = 712;
P6.PLGN.TN = 884;
IRTN.PLGN.TN = 1036;
PLGN.PLGN.TN = 284;
ILGN.PLGN.TN = 200;
SI.PLGN.TN = 284;
P5.ILGN.TN = 222;
P6.ILGN.TN = 278;
PLGN.ILGN.TN = 15;
ILGN.ILGN.TN = 732;
SI.ILGN.TN = 1461;
};
//end of parameter configuration file