-
Notifications
You must be signed in to change notification settings - Fork 0
/
oruga_massive_experiments_smog.py
225 lines (182 loc) · 7.94 KB
/
oruga_massive_experiments_smog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# -*- coding: utf-8 -*-
"""
ORUGA: Optimizing Readability Using Genetic Algorithms
[Martinez-Gil2023a] J. Martinez-Gil, "Optimizing Readability Using Genetic Algorithms", arXiv preprint arXiv:2301.00374, 2023
@author: Jorge Martinez-Gil
"""
import csv
import pygad
import language_tool_python
from readability import Readability
from nltk.corpus import wordnet
from nltk.tokenize import sent_tokenize
def main():
text_array = []
index_array = []
text = ""
global last_fitness
def listToString(s):
str1 = ""
for ele in s:
str1 += str(ele)
str1 += " "
str1 = str1.replace(' ,', ',')
str1 = str1.replace('_', ' ')
return str1
def Synonym(word, number):
synonyms = []
for syn in wordnet.synsets(word):
for lm in syn.lemmas():
synonyms.append(lm.name())
if (not synonyms):
return -2, word
elif number >= len(synonyms):
return len(synonyms)-1, synonyms[len(synonyms)-1]
else:
return int(number), synonyms[int(number-1)]
def obtain_text (solution):
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word.upper())
else:
print ('Error')
index += 1
result = listToString(text_converted)
return result
def correct_mistakes (text):
my_tool = language_tool_python.LanguageTool('en-US')
my_text = text
my_matches = my_tool.check(my_text)
myMistakes = []
myCorrections = []
startPositions = []
endPositions = []
# using the for-loop
for rules in my_matches:
if len(rules.replacements) > 0:
startPositions.append(rules.offset)
endPositions.append(rules.errorLength + rules.offset)
myMistakes.append(my_text[rules.offset : rules.errorLength + rules.offset])
myCorrections.append(rules.replacements[0])
# creating new object
my_NewText = list(my_text)
# rewriting the correct passage
for n in range(len(startPositions)):
for i in range(len(my_text)):
my_NewText[startPositions[n]] = myCorrections[n]
if (i > startPositions[n] and i < endPositions[n]):
my_NewText[i] = ""
my_NewText = "".join(my_NewText)
return my_NewText
def fitness_func(solution, solution_idx):
#preprocessing
a = 0
for i in index_array:
if index_array[a] <= 0:
solution[a] = 0
a += 1
res2 = text.split()
text_converted = []
index=0
for i in res2:
if solution[index] < 1:
text_converted.append (i)
elif solution[index] >= 1:
number, word = Synonym(i,solution[index])
text_converted.append (word)
else:
print ('Error')
index += 1
result = listToString(text_converted)
r = Readability(result)
return r.smog().score * -1
def on_generation(ga_instance):
print("Generation = {generation}".format(generation=ga_instance.generations_completed))
print("Fitness = {fitness}".format(fitness=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]))
print("Change = {change}".format(change=ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1] - last_fitness))
ast_fitness = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)[1]
with open('texts.txt', 'r') as fd:
reader = csv.reader(fd)
for row in reader:
text = ''.join(row)
sentences = sent_tokenize(text)
while (len(sentences) < 30):
sentences = sentences + sentences
text = ''.join(sentences)
text = text.replace('.', '. ')
print (text)
print (len(sent_tokenize(text)))
r = Readability(text)
initial_score = r.smog().score
res = text.split()
for i in res:
flag = 0
if ',' in i:
i = i.replace(',', '')
flag = 1
if '.' in i:
i = i.replace('.', '')
flag = 2
if (not i[0].isupper() and len(i) > 3):
number, word = Synonym(i,6)
text_array.append (word)
index_array.append (number)
else:
text_array.append (i)
index_array.append (0)
if flag == 1:
cad = text_array[-1]
text_array.pop()
cad = cad + str(',')
text_array.append (cad)
flag = 0
if flag == 2:
cad = text_array[-1]
text_array.pop()
cad = cad + str('.')
text_array.append (cad)
flag = 0
newText = listToString(text_array)
#print(newText)
print(index_array)
# Parameters for the GA
function_inputs = index_array
num_generations = 100 # Number of generations
num_parents_mating = 10 # Number of solutions to be selected as parents in the mating pool
sol_per_pop = 20 # Number of solutions in the population
num_genes = len(function_inputs) # Number of genes
# Initialize the GA instance without the 'on_generation' argument
ga_instance = pygad.GA(num_generations=1, # Set to 1 because we are controlling the generations manually
num_parents_mating=num_parents_mating,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
fitness_func=fitness_func)
last_fitness = 0 # Initialize last fitness for comparison
# Manually iterate through generations
for generation in range(num_generations):
ga_instance.run() # Run GA for one generation
# Getting the best solution after the current generation
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Generation = {}".format(generation + 1))
print("Fitness = {}".format(solution_fitness))
print("Change = {}".format(solution_fitness - last_fitness))
last_fitness = solution_fitness # Update the last fitness value
# At this point, the GA has completed all generations
# You can directly get the best solution details without passing any arguments
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
print("Index of the best solution : {solution_idx}".format(solution_idx=solution_idx))
new_text = correct_mistakes(obtain_text(solution))
rr = Readability(new_text)
with open('results.txt', 'a') as the_file:
the_file.write("Difference " + str(initial_score - rr.smog().score) + str('\n'))
if __name__ == "__main__":
for x in range(10):
main()