forked from 12dmodel/deep_motion_mag
-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
136 lines (109 loc) · 3.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
"""
Some codes from https://github.com/Newmu/dcgan_code
"""
from __future__ import division
import math
import pprint
import numpy as np
import copy
import os
import errno
import cv2
pp = pprint.PrettyPrinter()
# -----------------------------
# new added functions for cyclegan
class ImagePool(object):
def __init__(self, maxsize=50):
self.maxsize = maxsize
self.num_img = 0
self.images = []
def __call__(self, image):
if self.maxsize <= 0:
return image
if self.num_img < self.maxsize:
self.images.append(image)
self.num_img += 1
return image
if np.random.rand() > 0.5:
idx = int(np.random.rand()*self.maxsize)
tmp1 = copy.copy(self.images[idx])[0]
self.images[idx][0] = image[0]
idx = int(np.random.rand()*self.maxsize)
tmp2 = copy.copy(self.images[idx])[1]
self.images[idx][1] = image[1]
return [tmp1, tmp2]
else:
return image
def load_train_data(image_path, gray_scale=True, is_testing=False):
img_A = imread(image_path[0], gray_scale)
img_B = imread(image_path[1], gray_scale)
img_Out = imread(image_path[2], gray_scale)
if not is_testing:
if np.random.random() > 0.5:
img_A = np.fliplr(img_A)
img_B = np.fliplr(img_B)
img_Out = np.fliplr(img_Out)
img_A = img_A/127.5 - 1.
img_B = img_B/127.5 - 1.
img_Out = img_Out/127.5 - 1.
img_A, img_B, img_Out = np.atleast_3d(img_A, img_B, img_Out)
img_AB_out = np.concatenate((img_A, img_B, img_Out), axis=2)
return img_AB_out
def get_image(image_path,
image_size,
is_crop=True,
resize_w=64,
is_grayscale=False):
return transform(imread(image_path, is_grayscale),
image_size,
is_crop,
resize_w)
def save_images(images, size, image_path):
return imsave(inverse_transform(images), size, image_path)
def imread(path, is_grayscale=True):
if (is_grayscale):
return cv2.imread(path, flags=cv2.IMREAD_GRAYSCALE).astype(np.float)
else:
img = cv2.imread(path, flags=cv2.IMREAD_COLOR)
return cv2.cvtColor(img, code=cv2.COLOR_BGR2RGB).astype(np.float)
def merge_images(images, size):
return inverse_transform(images)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h * size[0], w * size[1], 3))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return img
def imsave(images, size, path):
im = merge(images, size)
if issubclass(im.dtype.type, np.floating):
im = im * 255
im = im.astype('uint8')
return cv2.imwrite(path, cv2.cvtColor(im, cv2.COLOR_RGB2BGR))
def center_crop(x, crop_h, crop_w,
resize_h=64, resize_w=64):
if crop_w is None:
crop_w = crop_h
h, w = x.shape[:2]
j = int(round((h - crop_h)/2.))
i = int(round((w - crop_w)/2.))
return cv2.resize(x[j:j+crop_h, i:i+crop_w], [resize_h, resize_w])
def transform(image, npx=64, is_crop=True, resize_w=64):
# npx : # of pixels width/height of image
if is_crop:
cropped_image = center_crop(image, npx, resize_w=resize_w)
else:
cropped_image = image
return np.array(cropped_image)/127.5 - 1.
def inverse_transform(images):
return (images + 1.) / 2.
def mkdir(d):
try:
os.makedirs(d)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(d):
pass
else:
raise