-
Notifications
You must be signed in to change notification settings - Fork 74
/
convert.py
132 lines (108 loc) · 4.67 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding: utf-8
import tensorflow as tf
import numpy as np
import scipy.misc
import os
import glob
def _bytes_features(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=value))
def _int64_features(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
# preproc for celebA
def center_crop(im, output_size):
output_height, output_width = output_size
h, w = im.shape[:2]
if h < output_height and w < output_width:
raise ValueError("image is small")
offset_h = int((h - output_height) / 2)
offset_w = int((w - output_width) / 2)
return im[offset_h:offset_h+output_height, offset_w:offset_w+output_width, :]
def convert(source_dir, target_dir, crop_size, out_size, exts=[''], num_shards=128, tfrecords_prefix=''):
if not tf.gfile.Exists(source_dir):
print('source_dir does not exists')
return
if tfrecords_prefix and not tfrecords_prefix.endswith('-'):
tfrecords_prefix += '-'
if tf.gfile.Exists(target_dir):
print("{} is Already exists".format(target_dir))
return
else:
tf.gfile.MakeDirs(target_dir)
# get meta-data
path_list = []
for ext in exts:
pattern = '*.' + ext if ext != '' else '*'
path = os.path.join(source_dir, pattern)
path_list.extend(glob.glob(path))
# shuffle path_list
np.random.shuffle(path_list)
num_files = len(path_list)
num_per_shard = num_files // num_shards # Last shard will have more files
print('# of files: {}'.format(num_files))
print('# of shards: {}'.format(num_shards))
print('# files per shards: {}'.format(num_per_shard))
# convert to tfrecords
shard_idx = 0
writer = None
for i, path in enumerate(path_list):
if i % num_per_shard == 0 and shard_idx < num_shards:
shard_idx += 1
tfrecord_fn = '{}{:0>4d}-of-{:0>4d}.tfrecord'.format(tfrecords_prefix, shard_idx, num_shards)
tfrecord_path = os.path.join(target_dir, tfrecord_fn)
print("Writing {} ...".format(tfrecord_path))
if shard_idx > 1:
writer.close()
writer = tf.python_io.TFRecordWriter(tfrecord_path)
# mode='RGB' read even grayscale image as RGB shape
im = scipy.misc.imread(path, mode='RGB')
# preproc
try:
im = center_crop(im, crop_size)
except Exception as e:
# print("im_path: {}".format(path))
# print("im_shape: {}".format(im.shape))
print("[Exception] {}".format(e))
continue
im = scipy.misc.imresize(im, out_size)
example = tf.train.Example(features=tf.train.Features(feature={
# "shape": _int64_features(im.shape),
"image": _bytes_features([im.tostring()])
}))
writer.write(example.SerializeToString())
writer.close()
''' Below function burrowed from https://github.com/fyu/lsun.
Process: LMDB => images => tfrecords
It is more efficient method to skip intermediate images, but that is a little messy job.
The method through images is inefficient but convenient.
'''
def export_images(db_path, out_dir, flat=False, limit=-1):
print('Exporting {} to {}'.format(db_path, out_dir))
env = lmdb.open(db_path, map_size=1099511627776, max_readers=100, readonly=True)
num_images = env.stat()['entries']
count = 0
with env.begin(write=False) as txn:
cursor = txn.cursor()
for key, val in cursor:
if not flat:
image_out_dir = join(out_dir, '/'.join(key[:6]))
else:
image_out_dir = out_dir
if not exists(image_out_dir):
os.makedirs(image_out_dir)
image_out_path = join(image_out_dir, key + '.webp')
with open(image_out_path, 'w') as fp:
fp.write(val)
count += 1
if count == limit:
break
if count % 10000 == 0:
print('{}/{} ...'.format(count, num_images))
if __name__ == "__main__":
# CelebA
convert('./data/celebA', './data/celebA_128_tfrecords', crop_size=[128, 128], out_size=[128, 128],
exts=['jpg'], num_shards=128, tfrecords_prefix='celebA')
# LSUN
# export_images('./tf.gans-comparison/data/lsun/bedroom_val_lmdb/',
# './tf.gans-comparison/data/lsun/bedroom_val_images/', flat=True)
# convert('./data/lsun/bedroom_train_images', './data/lsun/bedroom_128_tfrecords', crop_size=[128, 128],
# out_size=[128, 128], exts=['webp'], num_shards=128, tfrecords_prefix='lsun_bedroom')