-
Notifications
You must be signed in to change notification settings - Fork 0
/
PO_initiationv2.m
421 lines (386 loc) · 15.6 KB
/
PO_initiationv2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
load filtered_db_2015_02_24
load GENDER
FILE_IN=fopen('PO_initiation.txt', 'wt');
%also load some deomgraphic analysis !
% %
% % 3. PO initiation variables: mean, range and standard dev for PO
% % initiation age; frequencies and percentages for all other variables.
% %
% % PO initiation age (RxInitiation_1/Note_1). Is this correct? 2: RxInitiation_Note1/RxInitiation_1
PO_age='RxInitiation_Note1/RxInitiation_1';
indx=find(strcmp(headers,PO_age)==1);
indx_male=find(GENDER==1);
indx_female=find(GENDER==2);
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
data_mat(data_mat==0)=NaN;
data_mat(data_mat==77)=NaN;
data_mat(data_mat==88)=NaN;
data_mat(data_mat==99)=NaN;
ages=data_mat;
mean_age=nanmean(ages);
M_ages=nanmean(ages);
M_female=nanmean(ages(indx_female));
M_male=nanmean(ages(indx_male));
std_ages=nanstd(ages);
std_male=nanstd(ages(indx_male));
std_female=nanstd(ages(indx_female)) ;
min_age=min(ages);
max_age=max(ages);
min_female=min(ages(indx_female));
min_male=min(ages(indx_male));
max_female=max(ages(indx_female));
max_male=max(ages(indx_male));
range_ages=[num2str(sprintf('%.2f', min_age)) '-' num2str(sprintf('%.2f',max_age))];
range_male=[num2str(sprintf('%.2f',min_male)) '-' num2str(sprintf('%.2f',max_male))];
range_female=[num2str(sprintf('%.2f',min_female)) '-' num2str(sprintf('%.2f',max_female))];
fprintf(FILE_IN, '%s\n', 'Age');
temp=['Mean Age: Total ' num2str(sprintf('%.2f',M_ages)) ', Male ' num2str(sprintf('%.2f', M_male)) ', Female ' num2str(sprintf('%.2f', M_female))];
fprintf(FILE_IN, '%s\n', temp);
temp=['StdDev Age: Total ' num2str(sprintf('%.2f',std_ages)) ', Male ' num2str(sprintf('%.2f', std_male)) ', Female ' num2str(sprintf('%.2f', std_female))];
fprintf(FILE_IN, '%s\n', temp);
temp=['Age Range: Total ' range_ages ', Male ' range_male ', Female ' range_female];
fprintf(FILE_IN, '%s\n\n', temp);
% % Why initiated taking POs
% % the first 10 look correct (binary, as TRUE and FALSE now)
% % RxInitiation_3
% % Why did you take the prescription opioid(s)? (Check all that apply)
% %
% % 1 To Avoid Withdrawal
% % 2 To Facilitate/Enhance Sex
% % 3 To Help Manage Physical Pain
% % 4 I Was Bored
% % 5 Curiosity
% % 6 To Improve My Mood
% % 7 To Feel More Sociable
% % 8 To Party/Hang Out With Friends
% % 9 To Get High
% % 10 Other
% % 88 Don't Know
% % 99 Refused To Answer
reason_started={'RxInitiation_Note1/RxInitiation_3/1', 'RxInitiation_Note1/RxInitiation_3/2','RxInitiation_Note1/RxInitiation_3/3','RxInitiation_Note1/RxInitiation_3/4',...
'RxInitiation_Note1/RxInitiation_3/5','RxInitiation_Note1/RxInitiation_3/6','RxInitiation_Note1/RxInitiation_3/7','RxInitiation_Note1/RxInitiation_3/8','RxInitiation_Note1/RxInitiation_3/9','RxInitiation_Note1/RxInitiation_3/10'};
names={'To avoid withdrawl', 'To facilitate/ enhance sex', 'To help manage physical pain', 'Was bored', 'Curiosity', 'To improve mood', 'To feel more sociable', 'To party/ hang out with friends', 'To get high', 'Other'};
[r,c]=size(filtered_final);
filtered_data=filtered_final(2:r,:);
headers=filtered_final(1,:);
results2=cell.empty;
results2{1,1}='Question';
results2{1,2}='Code';
results2{1,3}='freq-total';
results2{1,4}='% total';
results2{1,5}='95% CI';
results2{1,6}='freq-males';
results2{1,7}='% males';
results2{1,8}='95% CI';
results2{1,9}='freq-females';
results2{1,10}='% females';
results2{1,11}='95% CI';
results2{1,12}='p value';
z=1.96;
for i=1:numel(reason_started)
R=reason_started{i};
indx=find(strcmp(headers,R)==1);
results2{i+1,1}=names{i};
if numel(indx)==1
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
tf=isa(data_mat,'cell');
indx_t=find(strcmp('TRUE',data_mat)==1);
if numel(indx_t)>0%tf==1
indx_t=find(strcmp('TRUE',data_mat)==1);
indx_f=find(strcmp('FALSE',data_mat)==1);
for j=1:numel(indx_t)
data_mat{indx_t(j)}=1;
end
for j=1:numel(indx_f)
data_mat{indx_f(j)}=0;
end
end
isnum = cellfun(@isnumeric,data_mat);
data_mat2 = NaN(size(data_mat));
data_mat2(isnum) = [data_mat{isnum}];
data_mat=data_mat2;
indx_male=find(GENDER==1);
indx_female=find(GENDER==2);
data_=find(isnan(data_mat)==0);
results2{i+1,2}=R;
%TOTAL------------------------------
N=numel(data_); %total answered
N_m=numel(intersect(data_,indx_male));
N_f=numel(intersect(data_,indx_female));
indx_yes=find(data_mat==1);
results2{i+1,3}=numel(indx_yes);
P=numel(indx_yes)/N;
upper=((P+z*sqrt(P*(1-P)/N))*100);
lower=((P-z*sqrt(P*(1-P)/N))*100) ;
p=P*100;
results2{i+1,4}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results2{i+1,5}=[lower '%-' upper '%'];
%MALE-------------------------------
indx_M=intersect(indx_male,indx_yes);
results2{i+1,6}=numel(indx_M);
P=numel(indx_M)/N_m;
upper=((P+z*sqrt(P*(1-P)/N_m))*100);
lower=((P-z*sqrt(P*(1-P)/N_m))*100) ;
p=P*100;
results2{i+1,7}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results2{i+1,8}=[lower '%-' upper '%'];
%FEMALES-------------------
indx_F=intersect(indx_female,indx_yes);
results2{i+1,9}=numel(indx_F);
P=numel(indx_F)/N_f;
upper=((P+z*sqrt(P*(1-P)/N_f))*100);
lower=((P-z*sqrt(P*(1-P)/N_f))*100) ;
p=P*100;
results2{i+1,10}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results2{i+1,11}=[lower '%-' upper '%'];
x=max(numel(indx_male),numel(indx_female));
stat_mat=nan(x,2);
stat_mat(1:numel(indx_male),1)=zeros(numel(indx_male),1);
stat_mat(1:numel(indx_female),2)=zeros(numel(indx_female),1);
stat_mat(1:numel(indx_M),1)=ones(1,numel(indx_M));
stat_mat(1:numel(indx_F),2)=ones(1,numel(indx_F));
[h,p]=ttest2(stat_mat(:,1), stat_mat(:,2));
results2{i+1,12}=p;
else
E
end
end
% % This actually gives a reason in text, not sure how to statistically analyze it
% % RxInitiation_Note1/RxInitiation_4
%%RxInitiation_7
% % When you first took Prescription Opioids nonmedically, with whom did you take it (them)? (Check all that apply)
% % 1 I used them alone
% % 2 With non drug using acquaintances
% % 3 With drug using acquaintances
% % 4 With non drug using friends
% % 5 With drug using friends
% % 6 With non drug using main sex partner
% % 7 With drug using main sex partner
% % 8 With non drug using casual sex partner(s)
% % 9 With drug using casual sex partner(s)
% % 10 With relative(s)
% % 11 Other (please specify)
% % 77 Not Applicable
% % 88 Don't Know
% % 99 Refused to Answer
started_with={'RxInitiation_Note1/RxInitiation_7/1','RxInitiation_Note1/RxInitiation_7/2','RxInitiation_Note1/RxInitiation_7/3','RxInitiation_Note1/RxInitiation_7/4','RxInitiation_Note1/RxInitiation_7/5',...
'RxInitiation_Note1/RxInitiation_7/6','RxInitiation_Note1/RxInitiation_7/7','RxInitiation_Note1/RxInitiation_7/8','RxInitiation_Note1/RxInitiation_7/9','RxInitiation_Note1/RxInitiation_7/10','RxInitiation_Note1/RxInitiation_7/11',};
names={'Alone', 'With non drug using acquaintances', 'With drug using acquaintances', 'With non drug using friends', 'With drug using friends', 'With non drug using main sex partner', ...
'With drug using main sex partner', 'With non drug using casual sex partner (s)', 'With drug using casual sex partner(s)', 'With relative(s)', 'Other'};
% % With who initiated POs
% % the first 11 look correct (binary, as TRUE and FALSE now)
% % This actually gives a reason in text, not sure how to statistically analyze it
% % RxInitiation_Note1/RxInitiation_8
results3=cell.empty;
results3{1,1}='Question';
results3{1,2}='Code';
results3{1,3}='freq-total';
results3{1,4}='% total';
results3{1,5}='95% CI';
results3{1,6}='freq-males';
results3{1,7}='% males';
results3{1,8}='95% CI';
results3{1,9}='freq-females';
results3{1,10}='% females';
results3{1,11}='95% CI';
results3{1,12}='p value';
z=1.96;
for i=1:numel(started_with)
R=started_with{i};
indx=find(strcmp(headers,R)==1);
results3{i+1,1}=names{i};
if numel(indx)==1
data_mat=filtered_data(:,indx);
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
tf=isa(data_mat,'cell');
indx_t=find(strcmp('TRUE',data_mat)==1);
if numel(indx_t)>0%tf==1
indx_t=find(strcmp('TRUE',data_mat)==1);
indx_f=find(strcmp('FALSE',data_mat)==1);
for j=1:numel(indx_t)
data_mat{indx_t(j)}=1;
end
for j=1:numel(indx_f)
data_mat{indx_f(j)}=0;
end
end
isnum = cellfun(@isnumeric,data_mat);
data_mat2 = NaN(size(data_mat));
data_mat2(isnum) = [data_mat{isnum}];
data_mat=data_mat2;
indx_male=find(GENDER==1);
indx_female=find(GENDER==2);
data_=find(isnan(data_mat)==0);
results3{i+1,2}=R;
%TOTAL------------------------------
N=numel(data_); %total answered
N_m=numel(intersect(data_,indx_male));
N_f=numel(intersect(data_,indx_female));
indx_yes=find(data_mat==1);
results3{i+1,3}=numel(indx_yes);
P=numel(indx_yes)/N;
upper=((P+z*sqrt(P*(1-P)/N))*100);
lower=((P-z*sqrt(P*(1-P)/N))*100) ;
p=P*100;
results3{i+1,4}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results3{i+1,5}=[lower '%-' upper '%'];
%MALE-------------------------------
indx_M=intersect(indx_male,indx_yes);
results3{i+1,6}=numel(indx_M);
P=numel(indx_M)/N_m;
upper=((P+z*sqrt(P*(1-P)/N_m))*100);
lower=((P-z*sqrt(P*(1-P)/N_m))*100) ;
p=P*100;
results3{i+1,7}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results3{i+1,8}=[lower '%-' upper '%'];
%FEMALES-------------------
indx_F=intersect(indx_female,indx_yes);
results3{i+1,9}=numel(indx_F);
P=numel(indx_F)/N_f;
upper=((P+z*sqrt(P*(1-P)/N_f))*100);
lower=((P-z*sqrt(P*(1-P)/N_f))*100) ;
p=P*100;
results3{i+1,10}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
results3{i+1,11}=[lower '%-' upper '%'];
x=max(numel(indx_male),numel(indx_female));
stat_mat=nan(x,2);
stat_mat(1:numel(indx_male),1)=zeros(numel(indx_male),1);
stat_mat(1:numel(indx_female),2)=zeros(numel(indx_female),1);
stat_mat(1:numel(indx_M),1)=ones(1,numel(indx_M));
stat_mat(1:numel(indx_F),2)=ones(1,numel(indx_F));
[h,p]=ttest2(stat_mat(:,1), stat_mat(:,2));
results3{i+1,12}=p;
else
E
end
end
% Where initiated POs
% RxInitiation_Note1/RxInitiation_10 ? range between 1-15 (77,88 etc) key?
% When you first took prescription opioid(s) nonmedically , where did you take it?
%
% 1 The place where I live with my parents
% 2 The place where I live without my parents
% 3 At a friend's place
% 4 A sex partners home
% 5 At your high school
% 6 At your college or dorm room
% 7 At A Dealers Place
% 8 In a room or house where people go to shoot (not a dealers place)
% 9 In A Club Or Bar
% 10 In A Car Or Similar Vehicle
% 11 In A Public Bathroom
% 12 In An Apartment Stairwell
% 13 In An Abandoned Building
% 14 In an outdoor public space (eg a park or street)
% 15 Other
% 88 Dont Know
% 99 Refused To Answer
% RxInitiation_Note1/RxInitiation_11 ? This actually gives a reason in text, not sure how to statistically analyze it
names={'The place where I live with my parents', 'The place where I live without my parents', 'At a friends place', 'A sex partners home', 'At your high school',...
'At your college or dorm room', 'At a dealers place', 'In a room or house where people go to shoot (not a dealers place)', 'In a club or bar', 'In a car or similar vehicle',...
'In a public bathroom', 'In an apartment stairwell', 'In an abandoned building', 'In an outdoor public space', 'Other'};
R='RxInitiation_Note1/RxInitiation_10';
indx=find(strcmp(headers,R)==1);
where_taken=cell.empty;
data_mat=filtered_data(:,indx);
tf=isa(data_mat,'cell');
indx_t=find(strcmp('TRUE',data_mat)==1);
if numel(indx_t)>0%tf==1
indx_t=find(strcmp('TRUE',data_mat)==1);
indx_f=find(strcmp('FALSE',data_mat)==1);
for j=1:numel(indx_t)
data_mat{indx_t(j)}=1;
end
for j=1:numel(indx_f)
data_mat{indx_f(j)}=0;
end
end
indx_male=find(GENDER==1);
indx_female=find(GENDER==2);
where_taken{1,1}=R;
where_taken{1,2}='freq-total';
where_taken{1,3}='% total';
where_taken{1,4}='95% CI';
where_taken{1,5}='freq-males';
where_taken{1,6}='% males';
where_taken{1,7}='95% CI';
where_taken{1,8}='freq-females';
where_taken{1,9}='% females';
where_taken{1,10}='95% CI';
indx_nan=find(strcmp('NaN', data_mat)==1);
for j=1:numel(indx_nan)
data_mat{indx_nan(j)}=NaN;
end
data_mat=cell2mat(data_mat);
for i=1:numel(names)
where_taken{i+1,1}=names{i};
%TOTAL------------------------------
N=numel(data_); %total answered
N_m=numel(intersect(data_,indx_male));
N_f=numel(intersect(data_,indx_female));
indx_yes=find(data_mat==i);
where_taken{i+1,2}=numel(indx_yes);
P=numel(indx_yes)/N;
upper=((P+z*sqrt(P*(1-P)/N))*100);
lower=((P-z*sqrt(P*(1-P)/N))*100) ;
p=P*100;
where_taken{i+1,3}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
where_taken{i+1,4}=[lower '%-' upper '%'];
%MALE-------------------------------
indx_M=intersect(indx_male,indx_yes);
where_taken{i+1,5}=numel(indx_M);
P=numel(indx_M)/N_m;
upper=((P+z*sqrt(P*(1-P)/N_m))*100);
lower=((P-z*sqrt(P*(1-P)/N_m))*100) ;
p=P*100;
where_taken{i+1,6}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
where_taken{i+1,7}=[lower '%-' upper '%'];
%FEMALES-------------------
indx_F=intersect(indx_female,indx_yes);
where_taken{i+1,8}=numel(indx_F);
P=numel(indx_F)/N_f;
upper=((P+z*sqrt(P*(1-P)/N_f))*100);
lower=((P-z*sqrt(P*(1-P)/N_f))*100) ;
p=P*100;
where_taken{i+1,9}=[sprintf('%.1f',p) '%'];
upper=sprintf('%0.1f',round(upper*10)/10);
lower=sprintf('%0.1f',round(lower*10)/10);
where_taken{i+1,10}=[lower '%-' upper '%'];
x=max(numel(indx_male),numel(indx_female));
stat_mat=nan(x,2);
stat_mat(1:numel(indx_male),1)=zeros(numel(indx_male),1);
stat_mat(1:numel(indx_female),2)=zeros(numel(indx_female),1);
stat_mat(1:numel(indx_M),1)=ones(1,numel(indx_M));
stat_mat(1:numel(indx_F),2)=ones(1,numel(indx_F));
[h,p]=ttest2(stat_mat(:,1), stat_mat(:,2));
where_taken{i+1,11}=p;
end
fclose(FILE_IN);