Skip to content

ksw0306/ClariNet

Repository files navigation

ClariNet

A Pytorch Implementation of ClariNet (Mel Spectrogram --> Waveform)

Requirements

PyTorch 0.4.1 & python 3.6 & Librosa

Examples

Step 1. Download Dataset

Step 2. Preprocessing (Preparing Mel Spectrogram)

python preprocessing.py --in_dir ljspeech --out_dir DATASETS/ljspeech

Step 3. Train Gaussian Autoregressive WaveNet (Teacher)

python train.py --model_name wavenet_gaussian --batch_size 8 --num_blocks 2 --num_layers 10

Step 4. Synthesize (Teacher)

--load_step CHECKPOINT : the # of the pre-trained teacher model's global training step (also depicted in the trained weight file)

python synthesize.py --model_name wavenet_gaussian --num_blocks 2 --num_layers 10 --load_step 10000 --num_samples 5

Step 5. Train Gaussian Inverse Autoregressive Flow (Student)

--teacher_name (YOUR TEACHER MODEL'S NAME)

--teacher_load_step CHECKPOINT : the # of the pre-trained teacher model's global training step (also depicted in the trained weight file)

--KL_type qp : Reversed KL divegence KL(q||p) or --KL_type pq : Forward KL divergence KL(p||q)

python train_student.py --model_name wavenet_gaussian_student --teacher_name wavenet_gaussian --teacher_load_step 10000 --batch_size 2 --num_blocks_t 2 --num_layers_t 10 --num_layers_s 10 --KL_type qp

Step 6. Synthesize (Student)

--model_name (YOUR STUDENT MODEL'S NAME)

--load_step CHECKPOINT : the # of the pre-trained student model's global training step (also depicted in the trained weight file)

--teacher_name (YOUR TEACHER MODEL'S NAME)

--teacher_load_step CHECKPOINT : the # of the pre-trained teacher model's global training step (also depicted in the trained weight file)

python synthesize_student.py --model_name wavenet_gaussian_student --load_step 10000 --teacher_name wavenet_gaussian --teacher_load_step 10000 --num_blocks_t 2 --num_layers_t 10 --num_layers_s 10 --num_samples 5

References