forked from ernestyalumni/Gravite
-
Notifications
You must be signed in to change notification settings - Fork 29
/
Gravity_Notes_grande.tex
4411 lines (3422 loc) · 169 KB
/
Gravity_Notes_grande.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% file: Gravity_Notes_grande.tex
% Me, working out the lectures, examples, and homework for the BEST VIDEO LECTURE SERIES on General Relativity and Gravity, ever:
% WE Heraeus International Winter School on Gravity and Light
%
% MIT OCW (Massachusetts Institute of Technology Open CourseWare) for 8.962 Fall 2006, Kamiokowski's website, and various other places
%
% If you liked this this file or found it useful, please consider donating on my Tilt/Open
% campaign: I'd want to raise money for a new computer.
% ernestyalumni.tilt.com
%
% Facebook : ernestyalumni
% github : ernestyalumni
% gmail : ernestyalumni
% linkedin : ernestyalumni
% twitter : ernestyalumni
% wordpress.com : ernestyalumni
% youtube : ernestyalumni
% Tilt/Open : ernestyalumni
%
% This code is open-source, governed by the Creative Common license. Use of this code is governed by the Caltech Honor Code: ``No member of the Caltech community shall take unfair advantage of any other member of the Caltech community.''
%
\documentclass[10pt, twoside]{amsart}
\pdfoutput=1
\usepackage{mathtools,amssymb,lipsum,caption}
\setcounter{tocdepth}{1} % to get subsubsections in toc
% cf. http://www.latex-community.org/forum/viewtopic.php?f=47&p=44760
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage[utf8]{inputenc}
\usepackage{cancel} % http://jansoehlke.com/2010/06/strikethrough-in-latex/
\usepackage{listings}
\usepackage[table]{xcolor}
\usepackage{pdfpages}
\usepackage{tikz}
\usetikzlibrary{matrix,arrows,calc,decorations.pathmorphing,shapes}
\usepackage{pifont} % http://tug.ctan.org/info/symbols/comprehensive/symbols-a4.pdf
\usepackage{multicol}
\hypersetup{colorlinks=true,citecolor=[rgb]{0,0.4,0}}
\oddsidemargin=15pt
\evensidemargin=5pt
\hoffset-45pt
\voffset-55pt
\topmargin=-4pt
\headsep=5pt
\textwidth=1120pt
\textheight=595pt
\paperwidth=1200pt
\paperheight=700pt
\footskip=40pt
\newtheorem{axiom}{Axiom}
\newtheorem{theorem}{Theorem}
\newtheorem{corollary}{Corollary}
%\newtheorem*{main}{Main Theorem}
\newtheorem{lemma}{Lemma}
\newtheorem{proposition}{Proposition}
\newtheorem{definition}{Definition}
\newtheorem{remark}{Remark}
\newenvironment{claim}[1]{\par\noindent\underline{Claim:}\space#1}{}
\newenvironment{claimproof}[1]{\par\noindent\underline{Proof:}\space#1}{\hfill $\blacksquare$}
%This defines a new command \questionhead which takes one argument and
%prints out Question #. with some space.
\newcommand{\questionhead}[1]
{\bigskip\bigskip
\noindent{\small\bf Question #1.}
\bigskip}
\newcommand{\problemhead}[1]
{
\noindent{\small\bf Problem #1.}
}
\newcommand{\exercisehead}[1]
{ \smallskip
\noindent{\small\bf Exercise #1.}
}
\newcommand{\solutionhead}[1]
{
\noindent{\small\bf Solution #1.}
}
%-----------------------------------
\begin{document}
%-----------------------------------
\title[GR]{Notes on General Relativity (GR) and Gravity}
\author{Ernest Yeung}
\address{}
\email{ernestyalumni@gmail.com}
\urladdr{http://ernestyalumni.wordpress.com ernestyalumni.tilt.com }
\thanks{I write notes, review papers, and code and make calculations for physics, math, and engineering to help with education and research. With your support, we can keep education and research material available online, openly accessible, and free for anyone, anytime. If you like what I'm trying to do for physics education research, please go to my Tilt/Open crowdfunding campaign, read the mission statement, share the page, and contribute financially if you can. ernestyalumni.tilt.com }
\keywords{General Relativity, Gravity, Differential Geometry, Manifolds, Integration, MIT OCW, education, mathematics, physics}
\subjclass[GR]{General Relativity}
\date{23 mars 2015}
\begin{abstract}
These are notes on General Relativity (GR) and Gravity.
As of March 23, 2015, I find that the Central Lectures given by Dr. Frederic P. Schuller for the WE Heraeus International Winter School to be, unequivocally, the best, most lucid, and well-constructed lecture series on General Relativity and Gravity. Instead of reinventing the wheel, I write these notes to build upon and supplement the video lectures and tutorials already created by them. This includes my corrections, comments, relations to other aspects of theoretical physics, and code implementing calculations in GR.
It should be noted that for symbolic computation, I heavily use the SageManifolds v.0.7 package for Sage Math. My goal in this area is this: we see a concept or idea from GR and we go from the equation on the blackboard or textbook and into (Python/Sage Math) code that immediately computes a calculation.
I keep these notes available online, openly accessible, and free for anyone, anytime (with your (financial) help and contribution at Tilt/Open, which is a subscription service). I want to keep these notes openly accessible because I want to encourage anyone to freely edit, copy, and make their own notes in the spirit of open-source software.
I continuously update these notes and post them here \url{ernestyalumni.wordpress.com}
The stated goal of the WE Heraeus International Winter School on Gravity and Light is to take the student from an introduction to the research frontier (cf. \url{http://www.gravity-and-light.org/lectures}). I want to get myself and other students or ambitious non-academic (maybe he or she is a working professional who had studied physics before in college, went to work in another field, maybe even, gasp, investment banking or mobile app developer, but still is curious and passionate about physics and want to contribute) equipped with all the tools available to do research, do calculations, to design experiments or collect data. Again, we're not here to reinvent the wheel. I'm not trying to make a General Relativity appreciation class, but this is a serious attempt towards training to do research.
\end{abstract}
\maketitle
\definecolor{darkgreen}{rgb}{0,0.4,0}
\lstset{language=Python,
frame=bottomline,
basicstyle=\scriptsize,
identifierstyle=\color{blue},
keywordstyle=\bfseries,
commentstyle=\color{darkgreen},
stringstyle=\color{red},
}
%\lstlistoflistings
\tableofcontents
\begin{multicols*}{2}
\part{WE Heraeus International Winter School on Gravity and Light}
\section*{Introduction (from EY)}
The International Winter School on Gravity and Light held \emph{central lectures} given by Dr. Frederic P. Schuller. These lectures on General Relativity and Gravity are unequivocally and undeniably, the best and most lucid and well-constructed lecture series on General Relativity and Gravity. The mathematical foundation from topology and differential geometry from which General Relativity arises from is solid, well-selected in rigor. The lectures themselves are well-thought out and clearly explained.
Even more so, the International Winter School provided accompanying Tutorial Sessions for each of the lectures. I had given up hopes in seeing this component of the learning process ever be put online so that anyone and everyone in the world could learn through the Tutorial process as well. I was afraid that nobody would understand how the Tutorial or ``Office Hours'' session was important for students to digest and comprehend and work out-doing exercises-the material presented in the lectures. This International Winter School gets it and shows how online education has to be done, to do it in an excellent manner, moving forward.
For anyone who is serious about learning General Relativity and Gravity, I would simply point to these video lectures and tutorials.
What I want to do is to build upon the material presented in this International Winter School. Why it's important to me, and to the students and practicing researchers out there, is that the material presented takes the student from an introduction to the research frontier. That is the stated goal of the International Winter School. I want to dig into and help contribute to the cutting edge in research and this entire program with lectures and tutorials appears to be the most direct and sensible route directly to being able to do research in General Relativity and Gravity. -EY 20150323
\section{Lecture 1: Topology}
\subsection{Lecture 1: Topological Spaces}
\begin{definition}
Let $M$ be a set. \\
A \textbf{topology} $\mathcal{O}$ is a subset $\mathcal{O} \subseteq \mathcal{P}(M)$, $\mathcal{P}(M)$ power set of $M$: set of all subsets of $M$. satisfying
\begin{enumerate}
\item[(i)] $\emptyset \in \mathcal{O}$, $M \in \mathcal{O}$
\item[(ii)] $ U \in \mathcal{O}$, \, $V \in \mathcal{O} \Longrightarrow U\bigcap V \in \mathcal{O}$
\item[(iii)] $U_{\alpha} \in \mathcal{O}$, \, $\alpha \in \mathcal{A}$ \, $\Longrightarrow \left( \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \right) \in \mathcal{O}$
\end{enumerate}
\end{definition}
$ \left. \mathcal{O} \right\} $ utterly useless
\begin{definition}
$\mathcal{O}_{\text{standard}} \subseteq \mathcal{P}(\mathbb{R}^d)$
\end{definition}
EY : 20150524
I'll fill in the proof that $\mathcal{O}_{\text{standard}}$ is a topology.
\begin{proof}
$\emptyset \in \mathcal{O}_{\text{standard}}$ \\
since $\forall \, p \in \emptyset$, $\exists \, r \in \mathbb{R}^+$: $\mathcal{B}_r(p) \subseteq \emptyset$ (i.e. satisfied ``vacuously'') \\
Suppose $U,V \in \mathcal{O}_{\text{standard}}$. \\
Let $p \in U \bigcap V$. Then $\exists \, r_1, r_2 \in \mathbb{R}^+$ s.t. $\begin{aligned} & \quad \\
& \mathcal{B}_{r_1}(p) \subseteq U \\
& \mathcal{B}_{r_2}(p) \subseteq V \end{aligned}$ \\
Let $r=\min{ \lbrace r_1, r_2 \rbrace}$. \\
Clearly $\mathcal{B}_r(p) \subseteq U$ and $\mathcal{B}_r(p) \subseteq V$. Then $\mathcal{B}_r(p) \subseteq U \bigcap V$. So $U\bigcap V \in \mathcal{O}_{\text{standard}}$. \\
Suppose, $U_{\alpha} \in \mathcal{O}_{\text{standard}}$, $\forall \, \alpha \in \mathcal{A}$. \\
Let $p \in \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. Then $p \in U_{\alpha}$ for at least 1 $\alpha \in \mathcal{A}$. \\
\phantom{ \quad \, } $\exists \, r_{\alpha} \in \mathbb{R}^+$ s.t. $\mathcal{B}_{r_{\alpha}}(p) \subseteq U_{\alpha} \subseteq \bigcup_{\alpha \in \mathcal{A}} U_{\alpha}$. So $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{O}_{\text{standard}}$
\end{proof}
\subsection{2. Continuous maps}
\subsection{3. Composition of continuous maps}
\subsection{4. Inheriting a topology}
EY : 20150524
I'll fill in the proof that given $f$ continuous (cont.), then the restriction of $f$ onto a subspace $S$ is cont. If you want a reference, check out Klaus J\"{a}nich \cite[pp. 13, Ch. 1 Fundamental Concepts, Sec. Continuous Maps]{KJanich1995}
If cont. $f: M \to N$, $S \subseteq M$, then $\left. f \right|_S$ cont.
\begin{proof}
Let open $V \subseteq N$, i.e. $V \in \mathcal{O}_N$ i.e. $V$ in the topology $\mathcal{O}_N$ of $N$.
\[
\left. f\right|_S^{-1}(V) = \lbrace m \in M | \left. f \right|_S(m) \in V \rbrace
\]
Now $f^{-1}(V) = \lbrace m \in M | f(m) \in V \rbrace$. \\
So $f^{-1}(V) \bigcap S = \left. f \right|_S^{-1}(V)$
Now $f$ cont. So $f^{-1}(V) \in \mathcal{O}_N$. \\
and recall $\left. \mathcal{O}_S \right| := \lbrace U \bigcap S | U \in \mathcal{O}_M \rbrace$.
so $f^{-1}(V) \bigcap S = \left. f \right|_S^{-1}(V) \in \mathcal{O}_S$ i.e. $\left. f\right|_S^{-1}(V)$ open. \\
$\Longrightarrow \left. f\right|_S$ cont.
\end{proof}
\section*{Topology Tutorial Sheet}
filename : \texttt{main.pdf} \\
The WE-Heraeus International Winter School on Gravity and Light: Topology \\
EY : 20150524
What I won't do here is retype up the solutions presented in the Tutorial (cf. \url{https://youtu.be/_XkhZQ-hNLs}): the presenter did a very good job. If someone wants to type up the solutions and copy and paste it onto this LaTeX file, in the spirit of open-source collaboration, I would encourage this effort.
Instead, what I want to encourage is the use of as much CAS (Computer Algebra System) and symbolic and numerical computation because, first, we're in the 21st century, second, to set the stage for further applications in research. I use Python and Sage Math alot, mostly because they are open-source software (OSS) and fun to use. Also note that the structure of Sage Math modules matches closely to Category Theory.
In checking whether a set is a topology, I found it strange that there wasn't already a function in Sage Math to check each of the axioms. So I wrote my own; see my code snippet, which you can copy, paste, edit freely in the spirit of OSS here, titled \texttt{topology.sage}:
\href{https://gist.github.com/ernestyalumni/903eefd01be1f214598b}{gist github ernestyalumni topology.sage} \\
\href{https://gist.githubusercontent.com/ernestyalumni/903eefd01be1f214598b/raw/67083e3b3dec2faf2087713236b413b741bd1180/topology.sage}{Download topology.sage}
Loading \texttt{topology.sage}, after changing into (with the usual Linux terminal commands, cd, ls) by
\lstset{language=Python,basicstyle=\scriptsize\ttfamily,
commentstyle=\ttfamily\color{gray}}
\begin{lstlisting}[frame=single]
sage: load(``topology.sage'')
\end{lstlisting}
\exercisehead{2: Topologies on a simple set}
\questionhead{Does $\mathcal{O}_1:= \dots$ constitute a topology \dots?}
\textbf{Solution}: Yes, since we check by typing in the following commands in Sage Math:
\begin{lstlisting}[frame=single]
emptyset in O_1
Axiom2check(O_1) # True
Axiom3check(O_1) # True
\end{lstlisting}
\questionhead{What about $\mathcal{O}_2$ \dots ?}
\textbf{Solution}: No since the 3rd. axiom fails, as can be checked by typing in the following commands in Sage Math:
\begin{lstlisting}[frame=single]
emptyset in O_2
Axiom2check(O_2) # True
Axiom3check(O_2) # False
\end{lstlisting}
\section{Lecture 2: Topological Manifolds}
\subsection*{Lecture 2: Manifolds}
Topological spaces: $\exists \,$ so man that mathematicians cannot even classify them.
For spacetime physics, we may focus on topological spaces $(M,\mathcal{O})$ that can be \underline{charted}, analogously to how the surface of the earth is charted in an \underline{atlas}.
\subsection{Topological manifolds}
\begin{definition}
A topological space $(M,\mathcal{O})$ is called a \textbf{$d$-dimensional topological method} if \\
$\forall \, p \in M : \, \exists \, U \in \mathcal{O}, \, U \ni p \, : \, \exists \, x : U \subseteq M \to x(U) \subseteq \mathbb{R}^d$ \quad \quad \, $(M,\mathcal{O}), ( \mathbb{R}^d , \mathcal{O}_{\text{std}})$
\begin{enumerate}
\item[(i)] $x$ \textbf{ invertible }:
\[
x^{-1}:x(U) \to U
\]
\item[(ii)] $x$ \textbf{ continuous }
\item[(iii)] $x^{-1}$ \textbf{ continuous }
\end{enumerate}
\end{definition}
\subsection{Terminology}
\subsection{3. Chart transition maps}
Imagine 2 charts $(U,x)$ and $(V,y)$ with overlapping regions.
\subsection{4. Manifold philosophy}
Often it is desirable (or indeed the way) to define properties (``continuity'') of real-world object (``$\mathbb{R}\xrightarrow{ \gamma } M$'') by judging suitable coordinates not on the ``real-world'' object itself, but on a chart-representation of that real world object.
\subsection*{EY's add-ons}
This lecture gives me a good excuse to review Topology and Topological Manifolds from a mathematician's point of view. I find John M. Lee's \textbf{Introduction to Topological Manifolds} book good because it's elementary and thorough and it's fairly recent (2010) so it's up to date \cite{JMLee2010}. See my notes and solutions for the book; it's a file titled \verb|LeeJM_IntroTopManifolds_sol.pdf| of which I'll try to keep the pdf and LaTeX file available for download on my ernestyalumni Google Drive (so try to search for it on Google).
%20150531 : EY I was going to remark on the reasons why I write up solutions, but they include a very personal (but real) experience and in reflection, this is probably better left on another medium.
%There are 3 reasons that come up to mind why I write up these solutions: 1. I'm trying to learn the material myself and at the very minimum, the learning process at the start is \emph{imitating the master}. I try to find interesting exercises and problems to work out and if I can't do it, then I try to get help fast (mostly online, and mostly with stackexchange). 2. I'm trying to organize my notes and what I've learned and I've moved so much over the years that having it online or on a hard drive works better than for me to carry notebooks. I still remember how by my Winter 2012/2013 semester I was furiously typing up my notes on LaTeX to get a handle of organization and it paid off, because when I was robbed and assaulted the second time during my Masters studies, and had to quickly grab all my worldly possessions on my back, both hands, around my neck, through the snow, I was glad I didn't have anymore textbooks or notebooks than I did have (cf. \href{``Facing evil Pt. 1''}{https://medium.com/@ernesttravels/facing-evil-part-1-664bb515c6f5}). ``When you want to succeed as bad as you want to breathe,\dots'' cf. Eric Thomas. 3. I appreciate that learning math and physics can be dreadfully lonely. I hope to encourage the study of these fairly difficult subjects, like General Relativity and Topology through these notes and solutions; you're not alone in your struggle!
\section*{Tutorial Topological manifolds}
filename: \verb|Sheet_1.2.pdf|
%\exercisehead{1}
\exercisehead{4: Before the invention of the wheel}
\emph{Another one-dimensional topological manifold. Another one?}
Consider set $F^1:= \lbrace (m,n)\in \mathbb{R}^2 | m^4 + n^4=1 \rbrace$, equipped with subset topology $\left. \mathcal{O}_{\text{std}} \right|_{F^1}$
\questionhead{$x:F^1 \to \mathbb{R}$ is what?}
\solutionhead{} EY : 20150525 The tutorial video \url{https://youtu.be/ghfEQ3u_B6g} is really good and this solution is how I'd write it, but it's really the same (I needed the practice).
\[
\boxed{ \begin{aligned}
x : F^1 & \to \mathbb{R} \\
(m,n) & \mapsto m
\end{aligned} }
\]
If $m=0$, $n^4=1$ so $n=\pm 1$ so it's not injective.
Let the closed $n$-dim. upper half-space $\mathbb{H}^n \subseteq \mathbb{R}^1$. Then
\[
\begin{aligned}
\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n \geq 0 \rbrace \\
\text{int}\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n > 0 \rbrace \\
- \mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n \leq 0 \rbrace \\
-\text{int}\mathbb{H}^n = \lbrace (x_1 \dots x_n) \in \mathbb{R}^n | x_n <0 \rbrace
\end{aligned}
\]
\questionhead{This map $x$ may be made injective by restricting its domain to either of 2 maximal open subsets of $F^1$. Which ones?}
\solutionhead{}
Let
\[
\begin{aligned}
& U_+ = F^1 \cap \text{int}\mathbb{H}^2 \\
& U_- = F^1 \cap -\text{int}\mathbb{H}^2
\end{aligned}
\]
Look at
\[
\begin{aligned}
& x^4 = 1 - n^4 \\
\Longrightarrow & x = \pm ( 1 - n^4)^{1/4}
\end{aligned}
\]
Then for
\[
\begin{aligned}
x_+^{-1}: (-1,1) \subseteq \mathbb{R} & \to U_+ \\
m & \mapsto (m,(1-m^4)^{1/4}) \\
x_-^{-1}: (-1,1) \subseteq \mathbb{R} & \to U_- \\
m & \mapsto (m,-(1-m^4)^{1/4}) \\
\end{aligned}
\]
$x_+$,$x_-$ injective (since left inverse exists).
\questionhead{Construct injective $y$}
\solutionhead{}
Let
\[
\begin{aligned}
& V_+ = F^1 \cap \text{int}\mathbb{H}^1 \\
& V_- = F^1 \cap -\text{int}\mathbb{H}^1
\end{aligned}
\]
Then
\[
\begin{aligned}
y_+: V_+ & \to (-1,1) \subseteq \mathbb{R} \\
(m,n) & \mapsto n \\
y_-: V_- & \to (-1,1) \subseteq \mathbb{R} \\
(m,n) & \mapsto n
\end{aligned}
\]
\questionhead{Construct inverse $y^{-1}$}
\solutionhead{}
For
\[
\begin{aligned}
y_+^{-1}: (-1,1) \subseteq \mathbb{R} & \to V_+ \\
n & \mapsto ((1-n^4)^{1/4},n) \\
y_-^{-1}: (-1,1) \subseteq \mathbb{R} & \to V_- \\
n & \mapsto (-(1-n^4)^{1/4},n) \\
\end{aligned}
\]
$y_+$,$y_-$ injective (since left inverse exists).
Note $\begin{aligned} & \quad \\
& (-1,0) \notin U_+,U_- \\
& (1,0) \notin U_+,U_- \\
\end{aligned}$
and
$\begin{aligned} & \quad \\
& (0,1) \notin V_+,V_- \\
& (0,-1) \notin V_+,V_- \\
\end{aligned}$
\questionhead{construct \emph{transition map } $x \circ y^{-1}$}
\solutionhead{}
\[
\begin{aligned}
&
\begin{aligned}
x_+y_+^{-1} : (0,1) \subseteq \mathbb{R} & \to (0,1) \subseteq \mathbb{R} \\
n & \mapsto (1-n^4)^{1/4}
\end{aligned} \\
&
\begin{aligned}
x_-y_+^{-1} : (-1,0) \subseteq \mathbb{R} & \to (0,1) \subseteq \mathbb{R} \\
n & \xrightarrow{ y_+^{-1} } ( (1-n^4)^{1/4}, n) \xrightarrow{ x_- } (1-n^4)^{1/4}
\end{aligned} \\
& \begin{aligned}
x_+y_-^{-1} : (0,1) \subseteq \mathbb{R} & \to (-1,0) \subseteq \mathbb{R} \\
n & \mapsto -(1-n^4)^{1/4}
\end{aligned} \\
& \begin{aligned}
x_-y_-^{-1} : (-1,0) \subseteq \mathbb{R} & \to (-1,0) \subseteq \mathbb{R} \\
n & \mapsto -(1-n^4)^{1/4}
\end{aligned}
\end{aligned}
\]
\questionhead{\dots Does the collection of these domains and maps form an atlas of $F^1$?}
Yes, with atlas
\[
\mathcal{A} = \lbrace \begin{aligned} & (U_+,x_+) \\
& (U_-,x_-) \end{aligned}, \, \begin{aligned} & (V_+,y_+) \\ & (V_-,y_-) \end{aligned} \rbrace
\]
Clearly
\[
\begin{gathered}
U_+ \cup U_- \cup V_+ \cup V_- = (F^1 \cap \text{int}\mathbb{H}^2) \cup (F^1 \cap -\text{int}\mathbb{H}^2)\cup (F^1 \cap \text{int}\mathbb{H}^1) \cup (F^1 \cap -\text{int}\mathbb{H}^1) = \\
= F^1 \cap \mathbb{R}^2\backslash \lbrace (0,0) \rbrace = F^1
\end{gathered}
\]
and (the point is that) $x_{\pm},y_{\pm}$ are homeomorphisms of open sets of $F^1$ onto open sets of 1 dim. $\mathbb{R}^1$ (namely $(-1,1) \subseteq \mathbb{R}^1$), and so $\mathcal{A}$ is an atlas of $F^1$.
\section{}
\section{Lecture 4: Differentiable Manifolds}
so far: top. mfd. $\begin{gathered} \quad \\
(M,\mathcal{O}) \\
\text{dim}M = d \end{gathered}$
we wish to define a notion of differentiable \\
\phantom{ \quad \quad \, } curves $\mathbb{R} \to M$ \\
\phantom{ \quad \quad \, } function $M \to \mathbb{R}$ \\
\phantom{ \quad \quad \, } maps $M \to N$
\subsection{1. Strategy} choose a chart $(U,x)$
$\gamma : \mathbb{R} \to M$ portion of curve in chart domain
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=2em, column sep=3em, minimum width=1em]
{
\gamma : \mathbb{R} & U \\
& x(U) \subseteq \mathbb{R}^d \\
};
\path[->]
(m-1-1) edge node [above] {$$} (m-1-2)
edge node [left] {$x\circ \gamma$} (m-2-2)
(m-1-2) edge node [right] {$x$} (m-2-2);
\end{tikzpicture}
\underline{idea}. try to ``lift'' the undergraduate notion of differentiability of a curve on $\mathbb{R}^d$ to a notion of differentiability of a curve on $M$
\underline{Problem} Can this be well-defined under change of chart?
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
& y(U\cap V) \subseteq \mathbb{R}^d \\
\gamma : \mathbb{R} & U \cap V \neq \emptyset \\
& x(U\cap V) \subseteq \mathbb{R}^d \\
};
\path[->]
(m-2-1) edge node [auto] {$$} (m-2-2)
edge node [auto] {$x\circ \gamma$} (m-3-2)
edge node [auto] {$y\circ \gamma$} (m-1-2)
(m-2-2) edge node [auto] {$x$} (m-3-2)
edge node [auto] {$y$} (m-1-2)
(m-3-2) edge [bend right=40] node [right] {$y\circ x^{-1}$} (m-1-2);
\end{tikzpicture}
$x\circ \gamma$ undergraduate differentiable (``as a map $\mathbb{R} \to \mathbb{R}^d$'')
\[
\begin{gathered}
\underbrace{y\circ \gamma}_{\text{maybe only continuous, but not undergraduate differentiable} } = \underbrace{ ( \overbrace{ y\circ x^{-1}}^{\mathbb{R}^d \to \mathbb{R}^d } )}_{\text{continuous}} \circ \underbrace{ \overbrace{ (x\circ \gamma) }^{\mathbb{R}\to \mathbb{R}^d} }_{ \text{ undergrad differentiable } } = y \circ (x^{-1} \circ x) \circ \gamma
\end{gathered}
\]
At first sight, strategy does not work out.
\subsection{2. Compatible charts}
In section 1, we used any imaginable charts on the top. mfd. $(M,\mathcal{O})$.
To emphasize this, we may say that we took $U$ and $V$ from the \emph{maximal atlas} $\mathcal{A}$ of $(M,\mathcal{O})$.
\begin{definition}
Two charts $(U,x)$ and $(V,y)$ of a top. mfd. are called \ding{96}-compatible if
either
\begin{enumerate}
\item[(a)] $U \cap V = \emptyset$
or \item[(b)] $U\cap V \neq \emptyset$
\end{enumerate}
chart transition maps have undergraduate \ding{96} property.
EY : 20151109 e.g. since $\mathbb{R}^d \to \mathbb{R}^d$, can use undergradate \ding{96} property such as continuity or differentiability.
\[
\begin{aligned}
& y \circ x^{-1} : x(U \cap V) \subseteq \mathbb{R}^d \to y(U\cap V) \subseteq \mathbb{R}^d \\
& x\circ y^{-1} : y(U\cap V) \subseteq \mathbb{R}^d \to x(U\cap V) \subseteq \mathbb{R}^d
\end{aligned}
\]
\end{definition}
\underline{Philosophy}:
\begin{definition}
An atlas $\mathcal{A}_{\text{\ding{96}}}$ is a \ding{96}-compatible atlas if any two charts in $\mathcal{A}_{\text{\ding{96}}}$ are \ding{96}-compatible.
\end{definition}
\begin{definition}
A \textbf{\ding{96}-manifold} is a triple $(\underbrace{ M,\mathcal{O} }_{\text{top. mfd.} }, \mathcal{A}_{\text{\ding{96}}})$ \quad \, $\mathcal{A}_{\text{\ding{96}}} \subseteq \mathcal{A}_{\text{maximal}} $
\end{definition}
\begin{tabular}{ l | c l}
\ding{96} & undergraduate \ding{96} & \\
\hline
$C^0$ & $C^0(\mathbb{R}^d \to \mathbb{R}^d) =$ & continuous maps w.r.t. $\mathcal{O}$ \\
$C^1$ & $C^1(\mathbb{R}^d \to \mathbb{R}^d) = $ & differentiable (once) and is continuous \\
$C^k$ & & $k$-times continuously differentiable \\
$D^k$ & & $k$-times differentiable \\
$\vdots$ & & \\
$C^{\infty}$ & $C^{\infty}(\mathbb{R}^d \to \mathbb{R}^d)$ & \\
$\mathbin{\rotatebox[origin=c]{-90}{$\supseteq$}}$ & & \\
$C^{\omega}$ & $\exists $ multi-dim. Taylor exp. & \\
$\mathbb{C}^{\infty}$ & satisfy Cauchy-Riemann equations, pair-wise &
\end{tabular}
EY : 20151109 Schuller says: $C^k$ is easy to work with because you can judge $k$-times cont. differentiability from existence of all partial derivatives \textbf{and} their continuity. There are examples of maps that partial derivatives exist but are not $D^k$, $k$-times differentiable.
\begin{theorem}[Whitney]
% Any $C^{k\geq 1}$-manifold $(M,\mathcal{O}, \mathcal{A}_{C^{k\geq 1}})$
Any $C^{k\geq 1}$-atlas, $\mathcal{A}_{C^{k\geq 1}}$ of a topological manifold \emph{contains} a $C^{\infty}$-atlas.
Thus we may w.l.o.g. always consider $C^{\infty}$-manifolds, ``smooth manifolds'', unless we wish to define Taylor expandibility/complex differentiability \dots
\end{theorem}
EY : 20151109 Hassler Whitney \footnote{\url{http://mathoverflow.net/questions/8789/can-every-manifold-be-given-an-analytic-structure}}
\begin{definition}
A smooth manifold $(\underbrace{ M,\mathcal{O} }_{\text{top. mfd. } }, \underbrace{ \mathcal{A}}_{C^{\infty}-\text{atlas}} )$
\end{definition}
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & M \\
& \mathbb{R}^d \\
};
\path[->]
(m-1-1) edge node [auto] {$\gamma$} (m-1-2)
edge node [auto] {$x\circ \gamma$} (m-2-2)
(m-1-2) edge node [auto] {$x$} (m-2-2);
\end{tikzpicture}
EY: 20151109 Schuller was explaining that the trajectory is real in $M$; the coordinate maps to obtain coordinates is $x\circ \gamma$
\subsection{4. Diffeomorphisms}
$M \xrightarrow{ \phi } N$
If $M,N$ are naked sets, the structure preserving maps are the bijections (invertible maps).
e.g. $\lbrace 1,2,3 \rbrace \to \lbrace a,b \rbrace$
\begin{definition}
$M \cong_{\text{set}} N$ (set-theoretically) isomorphic if $\exists \, $ bijection $\phi : M \to N$
\end{definition}
\underline{Examples}. $\mathbb{N} \cong_{\text{set}} \mathbb{Z}$ \\
$\mathbb{N} \cong_{\text{set}} \mathbb{Q}$ (EY: 20151109 Schuller says from diagonal counting)\\
$\mathbb{N} \cancel{\cong_{\text{set}}} \mathbb{R}$
Now $(M, \mathcal{O}_M) \cong_{\text{top}} (N,\mathcal{O}_N)$ (topl.) isomorphic $=$ ``homeomorphic'' $\exists \, $ bijection $\phi : M \to N$ \\
\phantom{ \quad \quad \, } $\phi, \phi^{-1}$ are continuous.
$(V,+,\cdot) \cong_{\text{vec}} ( W,+_w,\cdot_w)$ (EY: 20151109 vector space isomorphism) if \\
$\exists \, \text{ bijection } \phi : V \to W$ linearly
\underline{finally}
\begin{definition}
Two $C^{\infty}$-manifolds \\
$(M,\mathcal{O}_M, \mathcal{A}_M)$ and $(N,\mathcal{O}_N, \mathcal{A}_N)$ are said to be \textbf{diffeomorphic} if $\exists \, $ bijection $\phi : M \to N$ s.t.
\[
\begin{aligned} & \phi : M \to N \\
& \phi^{-1} : N \to M \end{aligned}
\]
are both $C^{\infty}$-maps
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R}^d & \mathbb{R}^e \\
M \supseteq U & V\subseteq N \\
\mathbb{R}^d & \mathbb{R}^e \\
};
\path[->]
(m-1-1) edge node [auto] {$\widetilde{y} \circ \phi \circ \widetilde{x}^{-1}$} (m-1-2)
(m-2-1) edge node [auto] {$\widetilde{x}$} (m-1-1)
edge node [auto] {$\phi$} (m-2-2)
edge node [auto] {$x$} (m-3-1)
(m-3-1) edge node [auto] {$ \substack{ y\circ \phi \circ x^{-1} \\
\text{ undergraduate } C^{\infty} }$} (m-3-2)
edge [bend left=50] node [auto] {$C^{\infty}$} (m-1-1)
(m-2-2) edge node [auto] {$\widetilde{y}$} (m-1-2)
edge node [auto] {$y$} (m-3-2)
(m-3-2) edge [bend right=50] node [auto] {$$} (m-1-2);
\end{tikzpicture}
\end{definition}
\begin{theorem}
$\# = $ number of $C^{\infty}$-manifolds one can make out of a given $C^0$-manifolds (if any) - up to diffeomorphisms.
\begin{tabular}{l | c r }
$\text{dim}M$ & $\#$ & \\
\hline
1 & 1 & Morse-Radon theorems \\
2 & 1 & Morse-Radon theorems \\
3 & 1 & Morse-Radon theorems \\
4 & uncountably infinitely many & \\
5 & finite & surgery theory \\
6 & finite & surgery theory \\
\vdots & finite & surgery theory
\end{tabular}
\end{theorem}
EY : 20151109 cf. \url{http://math.stackexchange.com/questions/833766/closed-4-manifolds-with-uncountably-many-differentiable-structures} \\
\href{http://www.maths.ed.ac.uk/~aar/papers/scorpan.pdf}{The wild world of 4-manifolds}
\section*{Tutorial 4 Differentiable Manifolds}
EY : 20151109 The \url{gravity-and-light.org} website, where you can download the tutorial sheets \emph{and} the full length videos for the tutorials and lectures, are no longer there. $=($
Hopefully, the YouTube video will remain: \url{https://youtu.be/FXPdKxOq1KA?list=PLFeEvEPtX_0RQ1ys-7VIsKlBWz7RX-FaL}
\exercisehead{1: True or false?} \emph{These basic questions are designed to spark discussion and as a self-test.}
Tick the correct statements, but not the incorrect ones!
\begin{enumerate}
\item[(a)] The function $f: \mathbb{R} \to \mathbb{R}$, \dots
\begin{itemize}
\item
\item
\item \dots , defined by $f(x) = |x^3|$, lies in $C^3(\mathbb{R} \to \mathbb{R})$.
EY : 20151109 \solutionhead{1a3} For $f: \mathbb{R} \to \mathbb{R}$, $f(x) = |x^3| = \begin{cases} x^3 & \text{ if } x \geq 0 \\
-x^3 & \text{ if } x < 0 \end{cases}$
\[
\begin{aligned}
& f'(x) = \begin{cases} 3x^2 & \text{ if } x \geq 0 \\
-3x^2 & \text{ if } x < 0 \end{cases} \\
& f''(x) = \begin{cases} 6x & \text{ if } x \geq 0 \\
-6x & \text{ if } x < 0 \end{cases}
\end{aligned}
\]
Thus,
\[
\boxed{ f(x) = |x^3| \in C^1(\mathbb{R}) \text{ but } f(x) \notin C^2(\mathbb{R}) \subseteq C^3(\mathbb{R}) }
\]
\item
\item
\end{itemize}
\item[(b)]
\item[(c)]
\end{enumerate}
\textbf{Short} \exercisehead{4: Undergraduate multi-dimensional analysis }
\emph{A good notation and basic results for partial differentiation}.
For a map $f: \mathbb{R}^d \to \mathbb{R}$ we denote by the map $\partial_i f: \mathbb{R}^d \to \mathbb{R}$ the partial derivative with respect to the $i$-th entry.
\questionhead{:} Given a function
\[
f: \mathbb{R}^3 \to \mathbb{R}; \, (\alpha, \beta, \delta) \mapsto f(\alpha,\beta,\delta) := \alpha^3\beta^2 + \beta^2 \delta + \delta
\]
calculate the values of the following derivatives:
\solutionhead{:}
\begin{itemize}
\item $(\partial_2f)(x,y,z) = $
\item $(\partial_1f)(\square,\circ,*) =$
\item $(\partial_1 \partial_2 f)(a,b,c) = $
\item $(\partial_3^2 f)(299,1222,0) =$
\end{itemize}
EY: 20151110
For $f(\alpha,\beta,\delta) := \alpha^3\beta^2 + \beta^2 \delta + \delta$, or $f(x,y,z) = x^3 y^2 + y^2 z + z$,
\[
\begin{aligned}
& (\partial_2 f) = 2(x^3y+yz) \\
& (\partial_1 f) = 3x^2 y^2 \\
& (\partial_1\partial_2 f) = 6x^2 y \\
& (\partial_3^2f) = 0
\end{aligned}
\]
and so
\begin{itemize}
\item $(\partial_2f)(x,y,z) = 2(x^3 y + yz) $
\item $(\partial_1f)(\square,\circ,*) = 3\square^2 \circ^2$
\item $(\partial_1 \partial_2 f)(a,b,c) = 6a^2 b$
\item $(\partial_3^2 f)(299,1222,0) = 0$
\end{itemize}
\exercisehead{5: Differentiability on a manifold}
\emph{How to deal with functions and curves in a chart}
Let $(M, \mathcal{O}, \mathcal{A})$ be a smooth $d$-dimensional manifold. Consider a chart $(U,x)$ of the atlas $\mathcal{A}$ together with a smooth curve $\gamma : \mathbb{R} \to U$ and a smooth function $f:U \to \mathbb{R}$ on the domain $U$ of the chart.
\questionhead{:} Draw a commutative diagram containing the chart domain, chart map, function, curveand the respective representatives of the function and the curve in the chart.
\solutionhead{:}
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & U & \mathbb{R}^d \\
& \mathbb{R} & \\
};
\path[->]
(m-1-1) edge node [above] {$\gamma$} (m-1-2)
edge [bend left=40] node [auto] {$x\circ \gamma$} (m-1-3)
(m-1-3) edge [bend left=15] node [auto] {$x^{-1}$} (m-1-2)
edge node [right] {$(f\circ x^{-1})$ } (m-2-2)
(m-1-2) edge node [left] {$f$} (m-2-2)
edge node [auto] {$x$} (m-1-3);
\end{tikzpicture} \quad \quad \, \begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\tau \in \mathbb{R} & p \in U & x(p) = (x\circ \gamma)(\tau) \in \mathbb{R}^d \\
& f(p) \in \mathbb{R} & \\
};
\path[|->]
(m-1-1) edge node [above] {$\gamma$} (m-1-2)
edge [bend left=40] node [auto] {$x\circ \gamma$} (m-1-3)
(m-1-3) edge [bend left=15] node [auto] {$x^{-1}$} (m-1-2)
edge node [right] {$(f\circ x^{-1})$ } (m-2-2)
(m-1-2) edge node [left] {$f$} (m-2-2)
edge node [auto] {$x$} (m-1-3);
\end{tikzpicture}
\questionhead{:} Consider, for $d=2$,
\[
(x\circ \gamma)(\lambda):= (\cos{(\lambda)}, \sin{(\lambda)} ) \text{ and } (f\circ x^{-1})((x,y)) := x^2 +y^2
\]
Using the chain rule, calculate
\[
(f\circ \gamma)'(\lambda)
\]
explicitly.
\solutionhead{:}
EY : 20151109 Indeed, the domains and codomains of this $f\gamma$ mapping makes sense, from $\mathbb{R} \to \mathbb{R}$ for
\begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & U & \mathbb{R}^d \\
& \mathbb{R} & \\
};
\path[->]
(m-1-1) edge node [above] {$\gamma$} (m-1-2)
edge [bend left=40] node [auto] {$x\circ \gamma$} (m-1-3)
edge node [auto] {$f\circ \gamma$} (m-2-2)
(m-1-3) edge [bend left=15] node [auto] {$x^{-1}$} (m-1-2)
edge node [right] {$(f\circ x^{-1})$ } (m-2-2)
(m-1-2) edge node [left] {$f$} (m-2-2)
edge node [auto] {$x$} (m-1-3);
\end{tikzpicture} \quad \quad \, \begin{tikzpicture}[decoration=snake]
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\tau \in \mathbb{R} & p \in U & x(p) = (x\circ \gamma)(\tau) \in \mathbb{R}^d \\
& f(p) \in \mathbb{R} & \\
};
\path[|->]
(m-1-1) edge node [above] {$\gamma$} (m-1-2)
edge [bend left=40] node [auto] {$x\circ \gamma$} (m-1-3)
edge node [auto] {$f\circ \gamma$} (m-2-2)
(m-1-3) edge [bend left=15] node [auto] {$x^{-1}$} (m-1-2)
edge node [right] {$(f\circ x^{-1})$ } (m-2-2)
(m-1-2) edge node [left] {$f$} (m-2-2)
edge node [auto] {$x$} (m-1-3);
\end{tikzpicture}
\[
\begin{gathered}
(f\circ \gamma)'(\lambda) = (Df)\cdot \dot{\gamma}(\lambda) = \frac{ \partial f}{ \partial x^j} \dot{\gamma}^j(\lambda) = 2x (-\sin{\lambda} ) + 2y \cos{\lambda} = 2(-\cos{\lambda} \sin{\lambda} + \sin{\lambda} \cos{\lambda} ) = 0
\end{gathered}
\]
\section{Lecture 5: Tangent Spaces}
lead question: ``what is the velocity of a curve $\gamma$ \@ point $p$?
\subsection{Velocities}
\begin{definition}
$(M,\mathcal{O},\mathcal{A})$ smooth mfd. \\
curve $\gamma : \mathbb{R} \to M$ at least $C^1$. \\
Suppose $\gamma(\lambda_0) =p$ \\
The \textbf{velocity} of $\gamma$ \@ $p$ is the linear map
\[
\begin{gathered}
v_{\gamma, p} : C^{\infty}(M) \xrightarrow{ \sim } \mathbb{R}
\end{gathered}
\]
$C^{\infty}(M) := \lbrace f: M \to \mathbb{R} | f \text{ smooth function } \rbrace$ equipped with $\begin{gathered} \quad \\
(f\oplus g)(p) := f(p) + g(p) \\
(\lambda \otimes g)(p) := \lambda \cdot g(p) \end{gathered}$
$\sim$ denotes linear map on top of $\xrightarrow{}$.
\[
f \mapsto v_{\gamma,p}(f):= (f\circ \gamma)'(\lambda_0)
\]
\end{definition}
intuition
\begin{tikzpicture}
\matrix (m) [matrix of math nodes, row sep=4em, column sep=6em, minimum width=2em]
{
\mathbb{R} & M & \mathbb{R} \\
};
\path[->]
(m-1-1) edge node [auto] {$\gamma$} (m-1-2)
edge [bend right=40] node [auto] {$f\circ \gamma $} (m-1-3)
(m-1-2) edge node [auto] {$f $} (m-1-3);
\end{tikzpicture}
Schuller says: children run around the world. Temperature function as temperature contour lines. You feel the temperature. You observe the rate of change of temperature as you run around. $f$ is temperature.
\underline{past}: `` $\underbrace{v^i}_{} (\partial_i f) = (\underbrace{v^i \partial_i}_{\text{vector}})f$
\subsection{Tangent vector space}
\begin{definition}
For each point $p \in M$ \\
def the \textbf{set} ``tangent space $\neq_0 M$ \@ $p$ ``
\[
T_p M := \lbrace v_{\gamma, p} | \gamma \text{ smooth curves } \rbrace
\]
\end{definition}
\underline{picture}:\\
rather $M$ than (embedded) $p$ $T_pM$ EY : 20151109 see \url{https://youtu.be/pepU_7NJSGM?t=12m38s} for the picture
\underline{Observation}: $T_pM$ can be made into a vector space.
\[
\begin{aligned}
& \begin{aligned}
\oplus : & T_pM \times T_pM \to \\
& (v_{\gamma,p} \oplus v_{\delta,p})(\underbrace{f}_{ \in C^{\infty}(M)} ) := v_{\gamma,p}(f) +_{\mathbb{R}} v_{\delta,p}(f) \\
\end{aligned} \\
& \begin{aligned}
\odot : & \mathbb{R} \times T_pM \to \text{Hom}(C^{\infty}(\mathbb{R}),\mathbb{R}) \\
& (\alpha \odot v_{\gamma,p} )(f) := \alpha \cdot_{\mathbb{R}} v_{\gamma, p}(f)
\end{aligned}
\end{aligned}
\]
Remains to be shown that
\begin{enumerate}
\item[(i)] $\exists \, \sigma$ curve : $v_{\gamma,p} \oplus v_{\delta,p} = v_{\sigma,p}$
\item[(ii)] $\exists \, \tau $ curve : $\alpha \odot v_{\gamma,p} = v_{\tau,p}$
\end{enumerate}
\underline{Claim}: $\begin{aligned} & \quad \\
\tau : \mathbb{R}& \to M \\
& \mapsto \tau(\lambda) := \gamma(\alpha \lambda + \lambda_0) = (\gamma \circ \mu_{\alpha})(\lambda)
\end{aligned}$
where $\begin{aligned} & \quad \\
\mu_{\alpha}: & \mathbb{R} \to \mathbb{R} \\
& r \mapsto \alpha \cdot r + \lambda_0 \end{aligned}$,
does the trick.
$\tau(0) = \gamma(\lambda_0) =p$
\[
\begin{aligned}
v_{\tau,p} & := (f\circ \tau)'(0) = (f\circ \gamma \circ \mu_{\alpha} )'(0) \\
& = (f\circ \gamma)'(\lambda_0) \cdot \alpha = \\
& = \alpha \cdot v_{\gamma,p}
\end{aligned}
\]
Now for the sum: %(EY:20151109 ??)
$v_{\gamma,p} \oplus v_{\delta,p} \overset{?}{=} v_{\sigma, p} $
make a \underline{choice} of chart $(\underbrace{U}_{\ni p} , x)$ In cloud: ill definition alarm bells.
and define:
Claim:
\[
\begin{aligned}
& \sigma : \mathbb{R} \to M \\
& \sigma(\lambda) := x^{-1}( \underbrace{ (x\circ \gamma)(\lambda_0 + \lambda)}_{\mathbb{R} \to \mathbb{R}^d} + (x\circ \delta)(\lambda_1+ \lambda) - (x\circ \gamma)(\lambda_0) )
\end{aligned}
\]
does the trick.
\begin{proof}
Since:
\[
\begin{aligned}
\sigma_x(0) & = x^{-1}((x\circ \gamma)(\lambda_0) + (x\circ \delta)(\lambda_1) - (x\circ \gamma)(\lambda_0)) \\
& = \delta(\lambda_1) = p \end{aligned}
\]
Now:
\[
\begin{aligned}
v_{\sigma_x,p}(f) & := (f\circ \sigma_x)'(0) = \\
& = ( \underbrace{ (f\circ x^{-1}) }_{\mathbb{R}^d \to \mathbb{R}} \circ \underbrace{ (x\circ \sigma_x) }_{\mathbb{R} \to \mathbb{R}^d} )'(\gamma) = \underbrace{ (x\circ \sigma_x)'(0) }_{(x\circ \gamma)'(\lambda_0) + (x\circ \delta)'(\lambda_1) } \cdot \left( \partial_i (f\circ x^{-1}) \right)(x( \underbrace{ \sigma(0)}_{p} ) ) = \\
& = (x\circ \gamma)'(\lambda_0)(\partial_i (f\circ x^{-1}) )(x(p)) + (x\circ \delta)(\lambda_1)(\partial_i (f\circ x^{-1}) )(x(p)) \\
& = (f\circ \gamma)'(\lambda_0) + (f\circ \delta)'(\lambda_1) = \\