-
Notifications
You must be signed in to change notification settings - Fork 33
/
run_train.py
382 lines (347 loc) · 19.6 KB
/
run_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# coding=utf-8
import os
import logging
import glob
import math
import json
import argparse
import random
from pathlib import Path
from tqdm import tqdm, trange
import numpy as np
import torch
from torch.utils.data import RandomSampler
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
from tokenization_unilm import UnilmTokenizer, WhitespaceTokenizer
from modeling_unilm import UnilmForSeq2Seq, UnilmConfig
from transformers import AdamW, get_linear_schedule_with_warmup
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
import utils_seq2seq
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys())
for conf in (UnilmConfig,)), ())
MODEL_CLASSES = {
'unilm': (UnilmConfig, UnilmForSeq2Seq, UnilmTokenizer)
}
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def _get_max_epoch_model(output_dir):
fn_model_list = glob.glob(os.path.join(output_dir, "model.*.bin"))
fn_optim_list = glob.glob(os.path.join(output_dir, "optim.*.bin"))
if (not fn_model_list) or (not fn_optim_list):
return None
both_set = set([int(Path(fn).stem.split('.')[-1]) for fn in fn_model_list]
) & set([int(Path(fn).stem.split('.')[-1]) for fn in fn_optim_list])
if both_set:
return max(both_set)
else:
return None
def main():
parser = argparse.ArgumentParser()
tb_writer = SummaryWriter()
# Required parameters
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--src_file", default=None, type=str,
help="The input data file name.")
parser.add_argument("--model_type", default=None, type=str, required=True,
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()))
parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS))
parser.add_argument("--output_dir", default=None, type=str, required=True,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--log_dir", default='', type=str,
help="The output directory where the log will be written.")
parser.add_argument("--model_recover_path", default=None, type=str,
help="The file of fine-tuned pretraining model.")
parser.add_argument("--optim_recover_path", default=None, type=str,
help="The file of pretraining optimizer.")
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
# Other parameters
parser.add_argument("--max_seq_length", default=128, type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument('--max_position_embeddings', type=int, default=None,
help="max position embeddings")
parser.add_argument("--do_train", action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case", action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size", default=32, type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size", default=64, type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--label_smoothing", default=0, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="The weight decay rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--num_train_epochs", default=3.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion", default=0.1, type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--hidden_dropout_prob", default=0.1, type=float,
help="Dropout rate for hidden states.")
parser.add_argument("--attention_probs_dropout_prob", default=0.1, type=float,
help="Dropout rate for attention probabilities.")
parser.add_argument("--no_cuda", action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank", type=int, default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--fp16_opt_level', type=str, default='O1',
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
"See details at https://nvidia.github.io/apex/amp.html")
parser.add_argument('--tokenized_input', action='store_true',
help="Whether the input is tokenized.")
parser.add_argument('--max_len_a', type=int, default=0,
help="Truncate_config: maximum length of segment A.")
parser.add_argument('--max_len_b', type=int, default=0,
help="Truncate_config: maximum length of segment B.")
parser.add_argument('--trunc_seg', default='',
help="Truncate_config: first truncate segment A/B (option: a, b).")
parser.add_argument('--always_truncate_tail', action='store_true',
help="Truncate_config: Whether we should always truncate tail.")
parser.add_argument("--mask_prob", default=0.20, type=float,
help="Number of prediction is sometimes less than max_pred when sequence is short.")
parser.add_argument("--mask_prob_eos", default=0, type=float,
help="Number of prediction is sometimes less than max_pred when sequence is short.")
parser.add_argument('--max_pred', type=int, default=20,
help="Max tokens of prediction.")
parser.add_argument("--num_workers", default=0, type=int,
help="Number of workers for the data loader.")
parser.add_argument('--mask_source_words', action='store_true',
help="Whether to mask source words for training")
parser.add_argument('--skipgram_prb', type=float, default=0.0,
help='prob of ngram mask')
parser.add_argument('--skipgram_size', type=int, default=1,
help='the max size of ngram mask')
parser.add_argument('--mask_whole_word', action='store_true',
help="Whether masking a whole word.")
parser.add_argument('--logging_steps', type=int, default=5,
help='the max size of ngram mask')
args = parser.parse_args()
if not(args.model_recover_path and Path(args.model_recover_path).exists()):
args.model_recover_path = None
args.output_dir = args.output_dir.replace(
'[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))
args.log_dir = args.log_dir.replace(
'[PT_OUTPUT_DIR]', os.getenv('PT_OUTPUT_DIR', ''))
os.makedirs(args.output_dir, exist_ok=True)
if args.log_dir:
os.makedirs(args.log_dir, exist_ok=True)
json.dump(args.__dict__, open(os.path.join(
args.output_dir, 'opt.json'), 'w'), sort_keys=True, indent=2)
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
dist.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = int(
args.train_batch_size / args.gradient_accumulation_steps)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError(
"At least one of `do_train` or `do_eval` must be True.")
if args.local_rank not in (-1, 0):
# Make sure only the first process in distributed training will download model & vocab
dist.barrier()
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path, max_position_embeddings=args.max_position_embeddings, label_smoothing=args.label_smoothing)
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case)
data_tokenizer = WhitespaceTokenizer() if args.tokenized_input else tokenizer
if args.local_rank == 0:
dist.barrier()
if args.do_train:
print("Loading Train Dataset", args.data_dir)
bi_uni_pipeline = [utils_seq2seq.Preprocess4Seq2seq(args.max_pred, args.mask_prob, list(tokenizer.vocab.keys()), tokenizer.convert_tokens_to_ids, args.max_seq_length, mask_source_words=False, skipgram_prb=args.skipgram_prb, skipgram_size=args.skipgram_size, mask_whole_word=args.mask_whole_word, tokenizer=data_tokenizer)]
file = os.path.join(
args.data_dir, args.src_file if args.src_file else 'train.tgt')
train_dataset = utils_seq2seq.Seq2SeqDataset(
file, args.train_batch_size, data_tokenizer, args.max_seq_length, bi_uni_pipeline=bi_uni_pipeline)
if args.local_rank == -1:
train_sampler = RandomSampler(train_dataset, replacement=False)
_batch_size = args.train_batch_size
else:
train_sampler = DistributedSampler(train_dataset)
_batch_size = args.train_batch_size // dist.get_world_size()
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=_batch_size, sampler=train_sampler,
num_workers=args.num_workers, collate_fn=utils_seq2seq.batch_list_to_batch_tensors, pin_memory=False)
# note: args.train_batch_size has been changed to (/= args.gradient_accumulation_steps)
# t_total = int(math.ceil(len(train_dataset.ex_list) / args.train_batch_size)
t_total = int(len(train_dataloader) * args.num_train_epochs /
args.gradient_accumulation_steps)
# Prepare model
recover_step = _get_max_epoch_model(args.output_dir)
if args.local_rank not in (-1, 0):
# Make sure only the first process in distributed training will download model & vocab
dist.barrier()
global_step = 0
if (recover_step is None) and (args.model_recover_path is None):
model_recover = None
else:
if recover_step:
logger.info("***** Recover model: %d *****", recover_step)
model_recover = torch.load(os.path.join(
args.output_dir, "model.{0}.bin".format(recover_step)), map_location='cpu')
# recover_step == number of epochs
global_step = math.floor(
recover_step * t_total / args.num_train_epochs)
elif args.model_recover_path:
logger.info("***** Recover model: %s *****",
args.model_recover_path)
model_recover = torch.load(
args.model_recover_path, map_location='cpu')
model = model_class.from_pretrained(
args.model_name_or_path, state_dict=model_recover, config=config)
if args.local_rank == 0:
dist.barrier()
model.to(device)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_proportion*t_total), num_training_steps=t_total)
if args.fp16:
try:
from apex import amp
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(
model, optimizer, opt_level=args.fp16_opt_level)
if args.local_rank != -1:
try:
from torch.nn.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError("DistributedDataParallel")
model = DDP(model, device_ids=[
args.local_rank], output_device=args.local_rank, find_unused_parameters=True)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if recover_step:
logger.info("***** Recover optimizer: %d *****", recover_step)
optim_recover = torch.load(os.path.join(
args.output_dir, "optim.{0}.bin".format(recover_step)), map_location='cpu')
if hasattr(optim_recover, 'state_dict'):
optim_recover = optim_recover.state_dict()
optimizer.load_state_dict(optim_recover)
logger.info("***** Recover amp: %d *****", recover_step)
amp_recover = torch.load(os.path.join(
args.output_dir, "amp.{0}.bin".format(recover_step)), map_location='cpu')
amp.load_state_dict(amp_recover)
logger.info("***** Recover scheduler: %d *****", recover_step)
scheduler_recover = torch.load(os.path.join(
args.output_dir, "sched.{0}.bin".format(recover_step)), map_location='cpu')
scheduler.load_state_dict(scheduler_recover)
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if args.do_train:
logger.info("***** Running training *****")
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", t_total)
model.train()
if recover_step:
start_epoch = recover_step+1
else:
start_epoch = 1
tr_loss, logging_loss = 0.0, 0.0
for i_epoch in trange(start_epoch, int(args.num_train_epochs)+1, desc="Epoch", disable=args.local_rank not in (-1, 0)):
if args.local_rank != -1:
train_sampler.set_epoch(i_epoch)
iter_bar = tqdm(train_dataloader, desc='Iter (loss=X.XXX)',
disable=args.local_rank not in (-1, 0))
for step, batch in enumerate(iter_bar):
batch = [
t.to(device) if t is not None else None for t in batch]
input_ids, segment_ids, input_mask, lm_label_ids, masked_pos, masked_weights, _ = batch
masked_lm_loss = model(input_ids, segment_ids, input_mask, lm_label_ids,
masked_pos=masked_pos, masked_weights=masked_weights)
if n_gpu > 1:
masked_lm_loss = masked_lm_loss.mean()
loss = masked_lm_loss
tr_loss += loss.item()
iter_bar.set_description('Iter (loss=%5.3f)' % loss.item())
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
torch.nn.utils.clip_grad_norm_(
amp.master_params(optimizer), args.max_grad_norm)
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(
model.parameters(), args.max_grad_norm)
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss)/args.logging_steps, global_step)
logging_loss = tr_loss
# Save a trained model
if (args.local_rank == -1 or torch.distributed.get_rank() == 0):
logger.info("** ** * Saving fine-tuned model and optimizer ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model
output_model_file = os.path.join(args.output_dir, "model.{0}.bin".format(i_epoch))
torch.save(model_to_save.state_dict(), output_model_file)
output_optim_file = os.path.join(args.output_dir, "optim.{0}.bin".format(i_epoch))
torch.save(optimizer.state_dict(), output_optim_file)
if args.fp16:
output_amp_file = os.path.join(args.output_dir, "amp.{0}.bin".format(i_epoch))
torch.save(amp.state_dict(), output_amp_file)
output_sched_file = os.path.join(args.output_dir, "sched.{0}.bin".format(i_epoch))
torch.save(scheduler.state_dict(), output_sched_file)
logger.info("***** CUDA.empty_cache() *****")
torch.cuda.empty_cache()
if __name__ == "__main__":
main()