-
Notifications
You must be signed in to change notification settings - Fork 40
/
train_renderer.py
187 lines (158 loc) · 7.54 KB
/
train_renderer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from pathlib import Path
import trimesh
from omegaconf import OmegaConf
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, Callback
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import Trainer
from skimage.io import imsave
from tqdm import tqdm
import mcubes
from ldm.base_utils import read_pickle, output_points
from renderer.renderer import NeuSRenderer, DEFAULT_SIDE_LENGTH
from ldm.util import instantiate_from_config
class ResumeCallBacks(Callback):
def __init__(self):
pass
def on_train_start(self, trainer, pl_module):
pl_module.optimizers().param_groups = pl_module.optimizers()._optimizer.param_groups
def render_images(model, output,):
# render from model
n = 180
azimuths = (np.arange(n) / n * np.pi * 2).astype(np.float32)
elevations = np.deg2rad(np.asarray([30] * n).astype(np.float32))
K, _, _, _, poses = read_pickle(f'meta_info/camera-16.pkl')
output_points
h, w = 256, 256
default_size = 256
K = np.diag([w/default_size,h/default_size,1.0]) @ K
imgs = []
for ni in tqdm(range(n)):
# R = euler2mat(azimuths[ni], elevations[ni], 0, 'szyx')
# R = np.asarray([[0,-1,0],[0,0,-1],[1,0,0]]) @ R
e, a = elevations[ni], azimuths[ni]
row1 = np.asarray([np.sin(e)*np.cos(a),np.sin(e)*np.sin(a),-np.cos(e)])
row0 = np.asarray([-np.sin(a),np.cos(a), 0])
row2 = np.cross(row0, row1)
R = np.stack([row0,row1,row2],0)
t = np.asarray([0,0,1.5])
pose = np.concatenate([R,t[:,None]],1)
pose_ = torch.from_numpy(pose.astype(np.float32)).unsqueeze(0)
K_ = torch.from_numpy(K.astype(np.float32)).unsqueeze(0) # [1,3,3]
coords = torch.stack(torch.meshgrid(torch.arange(h), torch.arange(w)), -1)[:, :, (1, 0)] # h,w,2
coords = coords.float()[None, :, :, :].repeat(1, 1, 1, 1) # imn,h,w,2
coords = coords.reshape(1, h * w, 2)
coords = torch.cat([coords, torch.ones(1, h * w, 1, dtype=torch.float32)], 2) # imn,h*w,3
# imn,h*w,3 @ imn,3,3 => imn,h*w,3
rays_d = coords @ torch.inverse(K_).permute(0, 2, 1)
R, t = pose_[:, :, :3], pose_[:, :, 3:]
rays_d = rays_d @ R
rays_d = F.normalize(rays_d, dim=-1)
rays_o = -R.permute(0, 2, 1) @ t # imn,3,3 @ imn,3,1
rays_o = rays_o.permute(0, 2, 1).repeat(1, h * w, 1) # imn,h*w,3
ray_batch = {
'rays_o': rays_o.reshape(-1,3).cuda(),
'rays_d': rays_d.reshape(-1,3).cuda(),
}
with torch.no_grad():
image = model.renderer.render(ray_batch,False,5000)['rgb'].reshape(h,w,3)
image = (image.cpu().numpy() * 255).astype(np.uint8)
imgs.append(image)
imageio.mimsave(f'{output}/rendering.mp4', imgs, fps=30)
def extract_fields(bound_min, bound_max, resolution, query_func, batch_size=64, outside_val=1.0):
N = batch_size
X = torch.linspace(bound_min[0], bound_max[0], resolution).split(N)
Y = torch.linspace(bound_min[1], bound_max[1], resolution).split(N)
Z = torch.linspace(bound_min[2], bound_max[2], resolution).split(N)
u = np.zeros([resolution, resolution, resolution], dtype=np.float32)
with torch.no_grad():
for xi, xs in enumerate(X):
for yi, ys in enumerate(Y):
for zi, zs in enumerate(Z):
xx, yy, zz = torch.meshgrid(xs, ys, zs)
pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.reshape(-1, 1)], dim=-1).cuda()
val = query_func(pts).detach()
outside_mask = torch.norm(pts,dim=-1)>=1.0
val[outside_mask]=outside_val
val = val.reshape(len(xs), len(ys), len(zs)).cpu().numpy()
u[xi * N: xi * N + len(xs), yi * N: yi * N + len(ys), zi * N: zi * N + len(zs)] = val
return u
def extract_geometry(bound_min, bound_max, resolution, threshold, query_func, color_func, outside_val=1.0):
u = extract_fields(bound_min, bound_max, resolution, query_func, outside_val=outside_val)
vertices, triangles = mcubes.marching_cubes(u, threshold)
b_max_np = bound_max.detach().cpu().numpy()
b_min_np = bound_min.detach().cpu().numpy()
vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None, :] + b_min_np[None, :]
vertex_colors = color_func(vertices)
return vertices, triangles, vertex_colors
def extract_mesh(model, output, resolution=512):
if not isinstance(model.renderer, NeuSRenderer): return
bbox_min = -torch.ones(3)*DEFAULT_SIDE_LENGTH
bbox_max = torch.ones(3)*DEFAULT_SIDE_LENGTH
with torch.no_grad():
vertices, triangles, vertex_colors = extract_geometry(bbox_min, bbox_max, resolution, 0, lambda x: model.renderer.sdf_network.sdf(x), lambda x: model.renderer.get_vertex_colors(x))
# output geometry
mesh = trimesh.Trimesh(vertices, triangles, vertex_colors=vertex_colors)
mesh.export(str(f'{output}/mesh.ply'))
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--image_path', type=str, required=True)
parser.add_argument('-n', '--name', type=str, required=True)
parser.add_argument('-b', '--base', type=str, default='configs/neus.yaml')
parser.add_argument('-l', '--log', type=str, default='output/renderer')
parser.add_argument('-s', '--seed', type=int, default=6033)
parser.add_argument('-g', '--gpus', type=str, default='0,')
parser.add_argument('-r', '--resume', action='store_true', default=False, dest='resume')
parser.add_argument('--fp16', action='store_true', default=False, dest='fp16')
opt = parser.parse_args()
# seed_everything(opt.seed)
# configs
cfg = OmegaConf.load(opt.base)
name = opt.name
log_dir, ckpt_dir = Path(opt.log) / name, Path(opt.log) / name / 'ckpt'
cfg.model.params['image_path'] = opt.image_path
cfg.model.params['log_dir'] = log_dir
# setup
log_dir.mkdir(exist_ok=True, parents=True)
ckpt_dir.mkdir(exist_ok=True, parents=True)
trainer_config = cfg.trainer
callback_config = cfg.callbacks
model_config = cfg.model
data_config = cfg.data
data_config.params.seed = opt.seed
data = instantiate_from_config(data_config)
data.prepare_data()
data.setup('fit')
model = instantiate_from_config(model_config,)
model.cpu()
model.learning_rate = model_config.base_lr
# logger
logger = TensorBoardLogger(save_dir=log_dir, name='tensorboard_logs')
callbacks=[]
callbacks.append(LearningRateMonitor(logging_interval='step'))
callbacks.append(ModelCheckpoint(dirpath=ckpt_dir, filename="{epoch:06}", verbose=True, save_last=True, every_n_train_steps=callback_config.save_interval))
# trainer
trainer_config.update({
"accelerator": "cuda", "check_val_every_n_epoch": None,
"benchmark": True, "num_sanity_val_steps": 0,
"devices": 1, "gpus": opt.gpus,
})
if opt.fp16:
trainer_config['precision']=16
if opt.resume:
callbacks.append(ResumeCallBacks())
trainer_config['resume_from_checkpoint'] = str(ckpt_dir / 'last.ckpt')
else:
if (ckpt_dir / 'last.ckpt').exists():
raise RuntimeError(f"checkpoint {ckpt_dir / 'last.ckpt'} existing ...")
trainer = Trainer.from_argparse_args(args=argparse.Namespace(), **trainer_config, logger=logger, callbacks=callbacks)
trainer.fit(model, data)
model = model.cuda().eval()
render_images(model, log_dir)
extract_mesh(model, log_dir)
if __name__=="__main__":
main()