forked from mahmoodlab/HistoFL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
200 lines (167 loc) · 7.57 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from __future__ import print_function
import argparse
import pdb
import os
import math
# internal imports
from utils.file_utils import save_pkl, load_pkl
from utils.utils import *
from utils.core_utils import train, train_fl
from datasets.dataset_generic import Generic_WSI_Classification_Dataset, Generic_MIL_Dataset
# pytorch imports
import torch
from torch.utils.data import DataLoader, sampler
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
def main(args):
# create results directory if necessary
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
if args.k_start == -1:
start = 0
else:
start = args.k_start
if args.k_end == -1:
end = args.k
else:
end = args.k_end
all_test_auc = []
all_val_auc = []
all_test_acc = []
all_val_acc = []
folds = np.arange(start, end)
for i in folds:
seed_torch(args.seed)
train_datasets, val_dataset, test_dataset = dataset.return_splits(from_id=False,
csv_path='{}/splits_{}.csv'.format(args.split_dir, i), no_fl=args.no_fl)
if len(train_datasets)>1:
for idx in range(len(train_datasets)):
print("worker_{} training on {} samples".format(idx,len(train_datasets[idx])))
print('validation: {}, testing: {}'.format(len(val_dataset), len(test_dataset)))
datasets = (train_datasets, val_dataset, test_dataset)
results, test_auc, val_auc, test_acc, val_acc = train_fl(datasets, i, args)
else:
train_dataset = train_datasets[0]
print('training: {}, validation: {}, testing: {}'.format(len(train_dataset), len(val_dataset), len(test_dataset)))
datasets = (train_dataset, val_dataset, test_dataset)
results, test_auc, val_auc, test_acc, val_acc = train(datasets, i, args)
all_test_auc.append(test_auc)
all_val_auc.append(val_auc)
all_test_acc.append(test_acc)
all_val_acc.append(val_acc)
#write results to pkl
filename = os.path.join(args.results_dir, 'split_{}_results.pkl'.format(i))
save_pkl(filename, results)
final_df = pd.DataFrame({'folds': folds, 'test_auc': all_test_auc,
'val_auc': all_val_auc, 'test_acc': all_test_acc, 'val_acc' : all_val_acc})
if len(folds) != args.k:
save_name = 'summary_partial_{}_{}.csv'.format(start, end)
else:
save_name = 'summary.csv'
final_df.to_csv(os.path.join(args.results_dir, save_name))
# Training settings
parser = argparse.ArgumentParser(description='Configurations for WSI Training')
parser.add_argument('--data_root_dir', type=str, default='/media/fedshyvana/ssd1',
help='data directory')
parser.add_argument('--max_epochs', type=int, default=50,
help='maximum number of epochs to train')
parser.add_argument('--lr', type=float, default=2e-4,
help='learning rate (default: 0.0002)')
parser.add_argument('--noise_level', type=float, default=0,
help='noise level added on the shared weights in federated learning (default: 0)')
parser.add_argument('--reg', type=float, default=1e-5,
help='weight decay (default: 1e-5)')
parser.add_argument('--seed', type=int, default=1,
help='random seed for reproducible experiment (default: 1)')
parser.add_argument('--k', type=int, default=10, help='number of folds (default: 10)')
parser.add_argument('--k_start', type=int, default=-1, help='start fold (default: -1, last fold)')
parser.add_argument('--k_end', type=int, default=-1, help='end fold (default: -1, first fold)')
parser.add_argument('--results_dir', default='./results', help='results directory (default: ./results)')
parser.add_argument('--split_dir', type=str, default=None,
help='manually specify the set of splits to use (default: None)')
parser.add_argument('--opt', type=str, choices = ['adam', 'sgd'], default='adam')
parser.add_argument('--exp_code', type=str, help='experiment code for saving results')
parser.add_argument('--weighted_sample', action='store_true', default=False, help='enable weighted sampling')
parser.add_argument('--task', type=str)
parser.add_argument('--inst_name', type=str, default=None, help='name of institution to use')
parser.add_argument('--weighted_fl_avg', action='store_true', default=False, help='weight model weights by support during FedAvg update')
parser.add_argument('--no_fl', action='store_true', default=False, help='train on centralized data')
parser.add_argument('--E', type=int, default=1, help='communication_freq')
args = parser.parse_args()
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
def seed_torch(seed=7):
import random
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if device.type == 'cuda':
print("I'm using GPU!!!")
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
seed_torch(args.seed)
args.drop_out=True
args.early_stopping=True
args.model_type='attention_mil'
args.model_size='small'
settings = {'num_splits': args.k,
'k_start': args.k_start,
'k_end': args.k_end,
'task': args.task,
'max_epochs': args.max_epochs,
'results_dir': args.results_dir,
'lr': args.lr,
'experiment': args.exp_code,
'reg': args.reg,
'seed': args.seed,
'model_type': args.model_type,
'model_size': args.model_size,
"use_drop_out": args.drop_out,
'weighted_sample': args.weighted_sample,
'E': args.E,
'opt': args.opt}
if args.inst_name is not None:
settings.update({'inst_name':args.inst_name})
else:
settings.update({'noise_level': args.noise_level,
'weighted_fl_avg': args.weighted_fl_avg,
'no_fl': args.no_fl})
print('\nLoad Dataset')
if args.task == 'classification':
args.n_classes=3
dataset = Generic_MIL_Dataset(csv_path = 'dataset_csv/classification_fl_dummy_dataset.csv',
data_dir= os.path.join(args.data_root_dir, 'classification_features_dir'),
shuffle = False,
seed = args.seed,
print_info = True,
label_dict = {'class_0':0, 'class_1':1, 'class_2':2},
label_col = 'diagnosis_label',
inst = args.inst_name,
patient_strat= False)
else:
raise NotImplementedError
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
args.results_dir = os.path.join(args.results_dir, str(args.exp_code) + '_s{}'.format(args.seed))
if not os.path.isdir(args.results_dir):
os.mkdir(args.results_dir)
if args.split_dir is None:
args.split_dir = os.path.join('splits', args.task)
else:
args.split_dir = os.path.join('splits', args.split_dir)
assert os.path.isdir(args.split_dir)
settings.update({'split_dir': args.split_dir})
with open(args.results_dir + '/experiment_{}.txt'.format(args.exp_code), 'w') as f:
print(settings, file=f)
f.close()
print("################# Settings ###################")
for key, val in settings.items():
print("{}: {}".format(key, val))
if __name__ == "__main__":
results = main(args)
print("finished!")
print("end script")