-
Notifications
You must be signed in to change notification settings - Fork 12
/
train.py
409 lines (367 loc) · 20.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
'''
Author: Xingtong Liu, Yiping Zheng, Benjamin Killeen, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, and Mathias Unberath
Copyright (C) 2020 Johns Hopkins University - All Rights Reserved
You may use, distribute and modify this code under the
terms of the GNU GENERAL PUBLIC LICENSE Version 3 license for non-commercial usage.
You should have received a copy of the GNU GENERAL PUBLIC LICENSE Version 3 license with
this file. If not, please write to: xliu89@jh.edu or unberath@jhu.edu
'''
import argparse
import multiprocessing
import cv2
from pathlib import Path
import torch
import numpy as np
import random
import datetime
from tensorboardX import SummaryWriter
import torchsummary
import tqdm
import math
# local import
import utils
import dataset
import models
import scheduler
import losses
if __name__ == '__main__':
multiprocessing.set_start_method('spawn', force=True)
parser = argparse.ArgumentParser(
description='Dense Descriptor Learning -- Train',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--adjacent_range', nargs='+', type=int, required=True,
help='interval range for a pair of video frames')
parser.add_argument('--image_downsampling', type=float, default=4.0,
help='input image downsampling rate for training acceleration')
parser.add_argument('--network_downsampling', type=int, default=64,
help='network downsampling rate')
parser.add_argument('--input_size', nargs='+', type=int, required=True,
help='input size')
parser.add_argument('--id_range', nargs='+', type=int, required=True,
help='id range for the training, validation, and testing dataset')
parser.add_argument('--batch_size', type=int, default=8, help='batch size of input samples')
parser.add_argument('--num_workers', type=int, default=8, help='number of workers for data loader')
parser.add_argument('--num_pre_workers', type=int, default=8,
help='number of pre-processing workers for data loader')
parser.add_argument('--lr_range', nargs='+', type=float, required=True,
help='lower and upper bound learning rate for cyclic lr')
parser.add_argument('--inlier_percentage', type=float, default=0.998,
help='percentage of inliers of SfM point clouds (for pruning extreme outliers)')
parser.add_argument('--display_interval', type=int, default=10, help='iteration interval of image display')
parser.add_argument('--validation_interval', type=int, default=1, help='iteration interval for validation')
parser.add_argument('--training_patient_id', nargs='+', type=int, required=True,
help='id of the training patient')
parser.add_argument('--validation_patient_id', nargs='+', type=int, required=True,
help='id of the validation patient')
parser.add_argument('--testing_patient_id', nargs='+', type=int, required=True, help='id of the testing patient')
parser.add_argument('--load_intermediate_data', action='store_true',
help='whether or not to load intermediate data')
parser.add_argument('--load_trained_model', action='store_true', help='whether or not to load trained model')
parser.add_argument('--num_epoch', type=int, required=True, help='number of epochs in total')
parser.add_argument('--num_iter', type=int, required=True, help='maximum number of iterations per epoch')
parser.add_argument('--heatmap_sigma', type=float, default=5.0,
help='sigma of heatmap for ground truth visualization')
parser.add_argument('--visibility_overlap', type=int, default=20, help='overlap of point visibility information')
parser.add_argument('--display_architecture', action='store_true', help='display the network architecture')
parser.add_argument('--trained_model_path', type=str, default=None, help='path to the trained model')
parser.add_argument('--training_data_root', type=str, required=True, help='path to the sfm training data')
parser.add_argument('--sampling_size', type=int, default=10,
help='number of positive sample pairs per iteration')
parser.add_argument('--log_root', type=str, required=True, help='root of logging')
parser.add_argument('--feature_length', type=int, default=256, help='output channel dimension of network')
parser.add_argument('--filter_growth_rate', type=int, default=10, help='filter growth rate of network')
parser.add_argument('--matching_scale', type=float, default=20.0, help='scale for soft thresholding')
parser.add_argument('--matching_threshold', type=float, default=0.9, help='threshold for soft thresholding')
parser.add_argument('--rr_weight', type=float, default=1.0, help='weight of relative response loss')
parser.add_argument('--cross_check_distance', type=float, default=5.0, help='cross check distance for '
'pair-wise feature matching pruning')
args = parser.parse_args()
load_trained_model = args.load_trained_model
if load_trained_model:
if args.trained_model_path is not None:
trained_model_path = Path(args.trained_model_path)
else:
raise IOError
else:
trained_model_path = None
log_root = Path(args.log_root)
adjacent_range = args.adjacent_range
image_downsampling = args.image_downsampling
height, width = args.input_size
batch_size = args.batch_size
num_workers = args.num_workers
num_pre_workers = args.num_pre_workers
lr_range = args.lr_range
inlier_percentage = args.inlier_percentage
display_interval = args.display_interval
training_patient_id = args.training_patient_id
validation_patient_id = args.validation_patient_id
testing_patient_id = args.testing_patient_id
load_intermediate_data = args.load_intermediate_data
num_epoch = args.num_epoch
num_iter = args.num_iter
display_architecture = args.display_architecture
training_data_root = Path(args.training_data_root)
sampling_size = args.sampling_size
id_range = args.id_range
feature_length = args.feature_length
filter_growth_rate = args.filter_growth_rate
matching_scale = args.matching_scale
matching_threshold = args.matching_threshold
rr_weight = args.rr_weight
cross_check_distance = args.cross_check_distance
validation_interval = args.validation_interval
network_downsampling = args.network_downsampling
heatmap_sigma = args.heatmap_sigma
visibility_overlap = args.visibility_overlap
current_date = datetime.datetime.now()
if not training_data_root.exists():
print("specified training data root does not exist")
raise IOError
# Fix randomness for reproducibility
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.manual_seed(10085)
np.random.seed(10085)
random.seed(10085)
if not log_root.exists():
log_root.mkdir()
log_root = log_root / "dense_descriptor_train_{}_{}_{}_{}".format(current_date.month, current_date.day,
current_date.hour,
current_date.minute)
writer = SummaryWriter(logdir=str(log_root))
print("Created tensorboard visualization at {}".format(str(log_root)))
precompute_root = training_data_root / "precompute"
try:
precompute_root.mkdir(mode=0o777, parents=True)
except OSError:
pass
train_filenames, val_filenames, test_filenames = \
utils.get_color_file_names_by_bag(root=training_data_root, training_patient_id=training_patient_id,
validation_patient_id=validation_patient_id,
testing_patient_id=testing_patient_id)
sequence_path_list = utils.get_parent_folder_names(training_data_root, id_range=id_range)
# Build training and validation dataset
train_dataset = dataset.SfMDataset(image_file_names=train_filenames,
folder_list=sequence_path_list,
adjacent_range=adjacent_range,
image_downsampling=image_downsampling,
inlier_percentage=inlier_percentage,
network_downsampling=network_downsampling,
load_intermediate_data=load_intermediate_data,
intermediate_data_root=precompute_root,
sampling_size=sampling_size,
phase="train", heatmap_sigma=heatmap_sigma,
pre_workers=num_pre_workers,
visible_interval=visibility_overlap,
num_iter=num_iter)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True,
num_workers=num_workers)
val_dataset = dataset.SfMDataset(image_file_names=val_filenames,
folder_list=sequence_path_list,
adjacent_range=adjacent_range,
image_downsampling=image_downsampling,
inlier_percentage=inlier_percentage,
network_downsampling=network_downsampling,
load_intermediate_data=load_intermediate_data,
intermediate_data_root=precompute_root,
sampling_size=sampling_size,
phase="validation", heatmap_sigma=heatmap_sigma,
pre_workers=num_pre_workers,
visible_interval=visibility_overlap,
num_iter=num_iter)
val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=batch_size, shuffle=False,
num_workers=num_workers)
feature_descriptor_model = models.FCDenseNet(
in_channels=3, down_blocks=(3, 3, 3, 3, 3),
up_blocks=(3, 3, 3, 3, 3), bottleneck_layers=4,
growth_rate=filter_growth_rate, out_chans_first_conv=16, feature_length=feature_length)
# Initialize the network with Kaiming He initialization
utils.init_net(feature_descriptor_model, type="kaiming", mode="fan_in", activation_mode="relu",
distribution="normal")
# Multi-GPU running
feature_descriptor_model = torch.nn.DataParallel(feature_descriptor_model)
# Summary network architecture
if display_architecture:
torchsummary.summary(feature_descriptor_model, input_size=(3, height, width))
# Optimizer
optimizer = torch.optim.SGD(feature_descriptor_model.parameters(), lr=lr_range[1], momentum=0.9)
lr_scheduler = scheduler.CyclicLR(optimizer, base_lr=lr_range[0], max_lr=lr_range[1])
# Loss functions
response_map_generator = models.FeatureResponseGenerator(scale=matching_scale, threshold=matching_threshold)
relative_response_loss = losses.RelativeResponseLoss()
# Validation metric
matching_accuracy_metric = losses.MatchingAccuracyMetric(threshold=5)
# Load trained model
if load_trained_model:
if trained_model_path.exists():
print("Loading {:s} ...".format(str(trained_model_path)))
pre_trained_state = torch.load(str(trained_model_path))
step = pre_trained_state['step']
epoch = pre_trained_state['epoch']
model_state = feature_descriptor_model.state_dict()
trained_model_state = {k: v for k, v in pre_trained_state["model"].items() if k in model_state}
model_state.update(trained_model_state)
feature_descriptor_model.load_state_dict(model_state)
print('Restored model, epoch {}, step {}'.format(epoch, step))
else:
print("No trained model detected")
raise OSError
else:
epoch = 0
step = 0
validation_step = 0
sift = cv2.xfeatures2d.SIFT_create(nfeatures=1000, nOctaveLayers=8,
contrastThreshold=0.00005,
edgeThreshold=100, sigma=1.1)
for cur_epoch in range(epoch, num_epoch + 1):
# Set the seed correlated to epoch for reproducibility
torch.manual_seed(10086 + cur_epoch)
np.random.seed(10086 + cur_epoch)
random.seed(10086 + cur_epoch)
feature_descriptor_model.train()
# Update progress bar
tq = tqdm.tqdm(total=len(train_loader) * batch_size, dynamic_ncols=True, ncols=40)
for batch, (
colors_1, colors_2,
feature_1D_locations_1,
feature_1D_locations_2,
feature_2D_locations_1,
feature_2D_locations_2,
gt_heatmaps_1,
gt_heatmaps_2,
boundaries,
folders, names
) in \
enumerate(train_loader):
if batch >= num_iter:
break
# Update learning rate
lr_scheduler.batch_step(batch_iteration=step)
tq.set_description('Epoch {}, lr {}'.format(cur_epoch, lr_scheduler.get_lr()))
colors_1, colors_2, \
feature_1D_locations_1, feature_1D_locations_2, \
feature_2D_locations_1, feature_2D_locations_2, \
boundaries = colors_1.cuda(), colors_2.cuda(), \
feature_1D_locations_1.cuda(), feature_1D_locations_2.cuda(), \
feature_2D_locations_1.cuda(), feature_2D_locations_2.cuda(), \
boundaries.cuda()
feature_maps_1 = feature_descriptor_model(colors_1)
feature_maps_2 = feature_descriptor_model(colors_2)
response_map_2 = response_map_generator(
[feature_maps_1, feature_maps_2, feature_1D_locations_1, boundaries])
response_map_1 = response_map_generator(
[feature_maps_2, feature_maps_1, feature_1D_locations_2, boundaries])
rr_loss_1 = relative_response_loss(
[response_map_1, feature_1D_locations_1, boundaries])
rr_loss_2 = relative_response_loss(
[response_map_2, feature_1D_locations_2, boundaries])
rr_loss = rr_weight * (0.5 * rr_loss_1 + 0.5 * rr_loss_2)
# Handle nan cases
if math.isnan(rr_loss.item()) or math.isinf(rr_loss.item()):
optimizer.zero_grad()
rr_loss.backward()
optimizer.zero_grad()
tq.update(batch_size)
continue
else:
optimizer.zero_grad()
rr_loss.backward()
torch.nn.utils.clip_grad_norm_(feature_descriptor_model.parameters(), 10.0)
optimizer.step()
if batch == 0:
mean_rr_loss = np.mean(rr_loss.item())
else:
mean_rr_loss = (mean_rr_loss * batch + rr_loss.item()) / (batch + 1.0)
# Result display
if batch % display_interval == 0:
with torch.no_grad():
gt_heatmaps_1 = gt_heatmaps_1.cuda()
gt_heatmaps_2 = gt_heatmaps_2.cuda()
display_success = utils.display_results(colors_1, colors_2, feature_maps_1, feature_maps_2,
boundaries, response_map_1,
gt_heatmaps_1, response_map_2, gt_heatmaps_2,
sift, cross_check_distance, step,
writer, phase="Train")
step += 1
tq.update(batch_size)
tq.set_postfix(loss='average: {:.5f}, current: {:.5f}'.format(mean_rr_loss, rr_loss.item())
)
writer.add_scalars('Train', {'loss': mean_rr_loss}, step)
tq.close()
if cur_epoch % validation_interval != 0:
continue
# Validation
feature_descriptor_model.eval()
# Update progress bar
tq = tqdm.tqdm(total=len(val_loader) * batch_size, dynamic_ncols=True, ncols=40)
torch.manual_seed(10086)
np.random.seed(10086)
random.seed(10086)
with torch.no_grad():
for batch, (
colors_1, colors_2,
feature_1D_locations_1,
feature_1D_locations_2,
feature_2D_locations_1,
feature_2D_locations_2,
gt_heatmaps_1,
gt_heatmaps_2,
boundaries,
folders, names
) in enumerate(val_loader):
tq.set_description('Validation Epoch {}'.format(cur_epoch))
colors_1, colors_2, \
feature_1D_locations_1, feature_1D_locations_2, \
feature_2D_locations_1, feature_2D_locations_2, \
boundaries = colors_1.cuda(), colors_2.cuda(), \
feature_1D_locations_1.cuda(), feature_1D_locations_2.cuda(), \
feature_2D_locations_1.cuda(), feature_2D_locations_2.cuda(), \
boundaries.cuda()
feature_maps_1 = feature_descriptor_model(colors_1)
feature_maps_2 = feature_descriptor_model(colors_2)
response_map_2 = response_map_generator(
[feature_maps_1, feature_maps_2, feature_1D_locations_1, boundaries])
response_map_1 = response_map_generator(
[feature_maps_2, feature_maps_1, feature_1D_locations_2, boundaries])
# Result display
if batch % display_interval == 0:
gt_heatmaps_1 = gt_heatmaps_1.cuda()
gt_heatmaps_2 = gt_heatmaps_2.cuda()
display_success = utils.display_results(colors_1, colors_2, feature_maps_1, feature_maps_2,
boundaries, response_map_1,
gt_heatmaps_1, response_map_2, gt_heatmaps_2,
sift, cross_check_distance, validation_step,
writer, phase="Validation")
ratio_1, ratio_2, ratio_3 = matching_accuracy_metric(
[response_map_1, feature_2D_locations_1, boundaries])
ratio_4, ratio_5, ratio_6 = matching_accuracy_metric(
[response_map_2, feature_2D_locations_2, boundaries])
accuracy_1 = 0.5 * ratio_1 + 0.5 * ratio_4
accuracy_2 = 0.5 * ratio_2 + 0.5 * ratio_5
accuracy_3 = 0.5 * ratio_3 + 0.5 * ratio_6
if batch == 0:
mean_accuracy_1 = np.mean(accuracy_1.item())
mean_accuracy_2 = np.mean(accuracy_2.item())
mean_accuracy_3 = np.mean(accuracy_3.item())
else:
mean_accuracy_1 = (mean_accuracy_1 * batch + accuracy_1.item()) / (batch + 1.0)
mean_accuracy_2 = (mean_accuracy_2 * batch + accuracy_2.item()) / (batch + 1.0)
mean_accuracy_3 = (mean_accuracy_3 * batch + accuracy_3.item()) / (batch + 1.0)
validation_step += 1
tq.update(batch_size)
tq.set_postfix(
accuracy_1='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_1, accuracy_1.item()),
accuracy_2='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_2, accuracy_2.item()),
accuracy_3='average: {:.5f}, current: {:.5f}'.format(mean_accuracy_3, accuracy_3.item())
)
writer.add_scalars('Validation', {'accuracy_1': mean_accuracy_1, 'accuracy_2': mean_accuracy_2,
'accuracy_3': mean_accuracy_3}, validation_step)
tq.close()
model_path_epoch = log_root / \
'checkpoint_model_epoch_{}_{}_{}_{}.pt'.format(cur_epoch, mean_accuracy_1,
mean_accuracy_2, mean_accuracy_3)
utils.save_model(model=feature_descriptor_model, optimizer=optimizer,
epoch=cur_epoch + 1, step=step, model_path=model_path_epoch,
validation_loss=mean_accuracy_1)
writer.close()