We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
(Pytorch-1.4.0) sh-4.3$python testcuda.py torch.Size([2, 64, 128, 128]) torch.Size([20, 32, 7, 7]) torch.Size([20, 32, 7, 7]) torch.Size([20, 32, 7, 7]) 0.971507, 1.943014 0.971507, 1.943014 Zero offset passed /home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py:302: UserWarning: The {}th input requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex. 'The {}th input requires gradient and ' check_gradient_dpooling: True Traceback (most recent call last): File "testcuda.py", line 265, in check_gradient_dconv() File "testcuda.py", line 97, in check_gradient_dconv eps=1e-3, atol=1e-4, rtol=1e-2)) File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 390, in gradcheck checkIfNumericalAnalyticAreClose(a, n, j) File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 372, in checkIfNumericalAnalyticAreClose 'numerical:%s\nanalytical:%s\n' % (i, j, n, a)) File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 289, in fail_test raise RuntimeError(msg) RuntimeError: Jacobian mismatch for output 0 with respect to input 1, numerical:tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0041, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], ..., [ 0.0000, 0.0000, 0.0000, ..., -0.0018, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0009]], device='cuda:0') analytical:tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0041, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], ..., [ 0.0000, 0.0000, 0.0000, ..., -0.0018, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0009]], device='cuda:0')
The text was updated successfully, but these errors were encountered:
chage the line 97 as follow and the error dispear:
print('check_gradient_dconv: ', gradcheck(dcn_v2_conv, (input, offset, mask, weight, bias, stride, padding, dilation, deformable_groups), eps=1e-3, atol=1e-3, rtol=1e-2))
Sorry, something went wrong.
I am not sure this version compatible with pytorcch 1.4, it is tested on latest version of pytorch
I am having the same error while using PyTorch 1.8.1/1.7.1.
No branches or pull requests
(Pytorch-1.4.0) sh-4.3$python testcuda.py
torch.Size([2, 64, 128, 128])
torch.Size([20, 32, 7, 7])
torch.Size([20, 32, 7, 7])
torch.Size([20, 32, 7, 7])
0.971507, 1.943014
0.971507, 1.943014
Zero offset passed
/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py:302: UserWarning: The {}th input requires gradient and is not a double precision floating point or complex. This check will likely fail if all the inputs are not of double precision floating point or complex.
'The {}th input requires gradient and '
check_gradient_dpooling: True
Traceback (most recent call last):
File "testcuda.py", line 265, in
check_gradient_dconv()
File "testcuda.py", line 97, in check_gradient_dconv
eps=1e-3, atol=1e-4, rtol=1e-2))
File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 390, in gradcheck
checkIfNumericalAnalyticAreClose(a, n, j)
File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 372, in checkIfNumericalAnalyticAreClose
'numerical:%s\nanalytical:%s\n' % (i, j, n, a))
File "/home/ma-user/anaconda3/envs/Pytorch-1.4.0/lib/python3.6/site-packages/torch/autograd/gradcheck.py", line 289, in fail_test
raise RuntimeError(msg)
RuntimeError: Jacobian mismatch for output 0 with respect to input 1,
numerical:tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0041, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.0000, 0.0000, 0.0000, ..., -0.0018, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0009]],
device='cuda:0')
analytical:tensor([[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0041, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
...,
[ 0.0000, 0.0000, 0.0000, ..., -0.0018, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],
[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0009]],
device='cuda:0')
The text was updated successfully, but these errors were encountered: