-
Notifications
You must be signed in to change notification settings - Fork 4
/
noiseSimplex.cginc
464 lines (387 loc) · 10.7 KB
/
noiseSimplex.cginc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
#ifndef NOISE_SIMPLEX_FUNC
#define NOISE_SIMPLEX_FUNC
/*
Description:
Array- and textureless CgFx/HLSL 2D, 3D and 4D simplex noise functions.
a.k.a. simplified and optimized Perlin noise.
The functions have very good performance
and no dependencies on external data.
2D - Very fast, very compact code.
3D - Fast, compact code.
4D - Reasonably fast, reasonably compact code.
------------------------------------------------------------------
Ported by:
Lex-DRL
I've ported the code from GLSL to CgFx/HLSL for Unity,
added a couple more optimisations (to speed it up even further)
and slightly reformatted the code to make it more readable.
Original GLSL functions:
https://github.com/ashima/webgl-noise
Credits from original glsl file are at the end of this cginc.
------------------------------------------------------------------
Usage:
float ns = snoise(v);
// v is any of: float2, float3, float4
Return type is float.
To generate 2 or more components of noise (colorful noise),
call these functions several times with different
constant offsets for the arguments.
E.g.:
float3 colorNs = float3(
snoise(v),
snoise(v + 17.0),
snoise(v - 43.0),
);
Remark about those offsets from the original author:
People have different opinions on whether these offsets should be integers
for the classic noise functions to match the spacing of the zeroes,
so we have left that for you to decide for yourself.
For most applications, the exact offsets don't really matter as long
as they are not too small or too close to the noise lattice period
(289 in this implementation).
*/
// 1 / 289
#define NOISE_SIMPLEX_1_DIV_289 0.00346020761245674740484429065744f
float mod289(float x) {
return x - floor(x * NOISE_SIMPLEX_1_DIV_289) * 289.0;
}
float2 mod289(float2 x) {
return x - floor(x * NOISE_SIMPLEX_1_DIV_289) * 289.0;
}
float3 mod289(float3 x) {
return x - floor(x * NOISE_SIMPLEX_1_DIV_289) * 289.0;
}
float4 mod289(float4 x) {
return x - floor(x * NOISE_SIMPLEX_1_DIV_289) * 289.0;
}
// ( x*34.0 + 1.0 )*x =
// x*x*34.0 + x
float permute(float x) {
return mod289(
x*x*34.0 + x
);
}
float3 permute(float3 x) {
return mod289(
x*x*34.0 + x
);
}
float4 permute(float4 x) {
return mod289(
x*x*34.0 + x
);
}
float taylorInvSqrt(float r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float4 taylorInvSqrt(float4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float4 grad4(float j, float4 ip)
{
const float4 ones = float4(1.0, 1.0, 1.0, -1.0);
float4 p, s;
p.xyz = floor( frac(j * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot( abs(p.xyz), ones.xyz );
// GLSL: lessThan(x, y) = x < y
// HLSL: 1 - step(y, x) = x < y
s = float4(
1 - step(0.0, p)
);
p.xyz = p.xyz + (s.xyz * 2 - 1) * s.www;
return p;
}
// ----------------------------------- 2D -------------------------------------
float snoise(float2 v)
{
const float4 C = float4(
0.211324865405187, // (3.0-sqrt(3.0))/6.0
0.366025403784439, // 0.5*(sqrt(3.0)-1.0)
-0.577350269189626, // -1.0 + 2.0 * C.x
0.024390243902439 // 1.0 / 41.0
);
// First corner
float2 i = floor( v + dot(v, C.yy) );
float2 x0 = v - i + dot(i, C.xx);
// Other corners
// float2 i1 = (x0.x > x0.y) ? float2(1.0, 0.0) : float2(0.0, 1.0);
// Lex-DRL: afaik, step() in GPU is faster than if(), so:
// step(x, y) = x <= y
int xLessEqual = step(x0.x, x0.y); // x <= y ?
int2 i1 =
int2(1, 0) * (1 - xLessEqual) // x > y
+ int2(0, 1) * xLessEqual // x <= y
;
float4 x12 = x0.xyxy + C.xxzz;
x12.xy -= i1;
// Permutations
i = mod289(i); // Avoid truncation effects in permutation
float3 p = permute(
permute(
i.y + float3(0.0, i1.y, 1.0 )
) + i.x + float3(0.0, i1.x, 1.0 )
);
float3 m = max(
0.5 - float3(
dot(x0, x0),
dot(x12.xy, x12.xy),
dot(x12.zw, x12.zw)
),
0.0
);
m = m*m ;
m = m*m ;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
float3 x = 2.0 * frac(p * C.www) - 1.0;
float3 h = abs(x) - 0.5;
float3 ox = floor(x + 0.5);
float3 a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Approximation of: m *= inversesqrt( a0*a0 + h*h );
m *= 1.79284291400159 - 0.85373472095314 * ( a0*a0 + h*h );
// Compute final noise value at P
float3 g;
g.x = a0.x * x0.x + h.x * x0.y;
g.yz = a0.yz * x12.xz + h.yz * x12.yw;
return 130.0 * dot(m, g);
}
// ----------------------------------- 3D -------------------------------------
float snoise(float3 v)
{
const float2 C = float2(
0.166666666666666667, // 1/6
0.333333333333333333 // 1/3
);
const float4 D = float4(0.0, 0.5, 1.0, 2.0);
// First corner
float3 i = floor( v + dot(v, C.yyy) );
float3 x0 = v - i + dot(i, C.xxx);
// Other corners
float3 g = step(x0.yzx, x0.xyz);
float3 l = 1 - g;
float3 i1 = min(g.xyz, l.zxy);
float3 i2 = max(g.xyz, l.zxy);
float3 x1 = x0 - i1 + C.xxx;
float3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
float3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
float4 p = permute(
permute(
permute(
i.z + float4(0.0, i1.z, i2.z, 1.0 )
) + i.y + float4(0.0, i1.y, i2.y, 1.0 )
) + i.x + float4(0.0, i1.x, i2.x, 1.0 )
);
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1/7
float3 ns = n_ * D.wyz - D.xzx;
float4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
float4 x_ = floor(j * ns.z);
float4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
float4 x = x_ *ns.x + ns.yyyy;
float4 y = y_ *ns.x + ns.yyyy;
float4 h = 1.0 - abs(x) - abs(y);
float4 b0 = float4( x.xy, y.xy );
float4 b1 = float4( x.zw, y.zw );
//float4 s0 = float4(lessThan(b0,0.0))*2.0 - 1.0;
//float4 s1 = float4(lessThan(b1,0.0))*2.0 - 1.0;
float4 s0 = floor(b0)*2.0 + 1.0;
float4 s1 = floor(b1)*2.0 + 1.0;
float4 sh = -step(h, 0.0);
float4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
float4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
float3 p0 = float3(a0.xy,h.x);
float3 p1 = float3(a0.zw,h.y);
float3 p2 = float3(a1.xy,h.z);
float3 p3 = float3(a1.zw,h.w);
//Normalise gradients
float4 norm = taylorInvSqrt(float4(
dot(p0, p0),
dot(p1, p1),
dot(p2, p2),
dot(p3, p3)
));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
float4 m = max(
0.6 - float4(
dot(x0, x0),
dot(x1, x1),
dot(x2, x2),
dot(x3, x3)
),
0.0
);
m = m * m;
return 42.0 * dot(
m*m,
float4(
dot(p0, x0),
dot(p1, x1),
dot(p2, x2),
dot(p3, x3)
)
);
}
// ----------------------------------- 4D -------------------------------------
float snoise(float4 v)
{
const float4 C = float4(
0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958 // -1 + 4 * G4
);
// First corner
float4 i = floor(
v +
dot(
v,
0.309016994374947451 // (sqrt(5) - 1) / 4
)
);
float4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
float4 i0;
float3 isX = step( x0.yzw, x0.xxx );
float3 isYZ = step( x0.zww, x0.yyz );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
float4 i3 = saturate(i0);
float4 i2 = saturate(i0-1.0);
float4 i1 = saturate(i0-2.0);
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
float4 x1 = x0 - i1 + C.xxxx;
float4 x2 = x0 - i2 + C.yyyy;
float4 x3 = x0 - i3 + C.zzzz;
float4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute(
permute(
permute(
permute(i.w) + i.z
) + i.y
) + i.x
);
float4 j1 = permute(
permute(
permute(
permute (
i.w + float4(i1.w, i2.w, i3.w, 1.0 )
) + i.z + float4(i1.z, i2.z, i3.z, 1.0 )
) + i.y + float4(i1.y, i2.y, i3.y, 1.0 )
) + i.x + float4(i1.x, i2.x, i3.x, 1.0 )
);
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
const float4 ip = float4(
0.003401360544217687075, // 1/294
0.020408163265306122449, // 1/49
0.142857142857142857143, // 1/7
0.0
);
float4 p0 = grad4(j0, ip);
float4 p1 = grad4(j1.x, ip);
float4 p2 = grad4(j1.y, ip);
float4 p3 = grad4(j1.z, ip);
float4 p4 = grad4(j1.w, ip);
// Normalise gradients
float4 norm = taylorInvSqrt(float4(
dot(p0, p0),
dot(p1, p1),
dot(p2, p2),
dot(p3, p3)
));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt( dot(p4, p4) );
// Mix contributions from the five corners
float3 m0 = max(
0.6 - float3(
dot(x0, x0),
dot(x1, x1),
dot(x2, x2)
),
0.0
);
float2 m1 = max(
0.6 - float2(
dot(x3, x3),
dot(x4, x4)
),
0.0
);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * (
dot(
m0*m0,
float3(
dot(p0, x0),
dot(p1, x1),
dot(p2, x2)
)
) + dot(
m1*m1,
float2(
dot(p3, x3),
dot(p4, x4)
)
)
);
}
// Credits from source glsl file:
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
//
// The text from LICENSE file:
//
//
// Copyright (C) 2011 by Ashima Arts (Simplex noise)
// Copyright (C) 2011 by Stefan Gustavson (Classic noise)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#endif