-
Notifications
You must be signed in to change notification settings - Fork 0
/
grid_search.py
66 lines (55 loc) · 2.06 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
import pandas as pd
import numpy as np
A = pd.read_csv('dataset_csv/dataset.csv')
m, n = A.shape
A_value = np.array(A.values[:,range(1,3)])
class_label = np.array([[]])
for i in range(m):
if A.iloc[i]['Tekanan Tulisan'] == "Kuat":
class_label = np.append(class_label, [1])
elif A.iloc[i]['Tekanan Tulisan'] == "Sedang":
class_label = np.append(class_label, [2])
elif A.iloc[i]['Tekanan Tulisan'] == "Ringan":
class_label = np.append(class_label, [3])
X = A[['Rerata', 'Persentase']]
y = class_label
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=0)
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]}]
scores = ['precision', 'recall']
for score in scores:
print("# Tuning hyper-parameters for %s" % score)
print()
clf = GridSearchCV(
SVC(), tuned_parameters, scoring='%s_macro' % score
)
clf.fit(X_train, y_train)
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print("Grid scores on development set:")
print()
means = clf.cv_results_['mean_test_score']
stds = clf.cv_results_['std_test_score']
for mean, std, params in zip(means, stds, clf.cv_results_['params']):
print("%0.3f (+/-%0.03f) for %r"
% (mean, std * 2, params))
print()
print("Detailed classification report:")
print()
print("The model is trained on the full development set.")
print("The scores are computed on the full evaluation set.")
print()
y_true, y_pred = y_test, clf.predict(X_test)
print(classification_report(y_true, y_pred))
print()