-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils_moe.py
484 lines (419 loc) · 20.3 KB
/
utils_moe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import numpy as np
import pandas as pd
from collections import Counter
from matplotlib import pyplot as plt
import math
import torch
import torch.nn as nn
import torch.optim as optim
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch.utils.data import Dataset
import os
import random
import pickle
from torch.utils.data import DataLoader, Dataset
from torch.distributions.normal import Normal
from models.net1d import Net1D, MyDataset
from utils import *
import pickle
class expert_model(nn.Module):
def __init__(self, expert_raw, n_class_all, label_convert):
super(expert_model, self).__init__()
self.expert_raw = expert_raw
self.n_class_all = n_class_all
self.label_convert = label_convert
self.device = 'cuda'
def forward(self, x):
out = self.expert_raw(x)
batch = x.size(0)
out2 = torch.ones(batch, self.n_class_all).to(self.device) * (out.min() - out.var())
for idx, label_conv in enumerate(self.label_convert):
out2[:, label_conv] = out[:, idx]
return out2
def HDM(model_name):
# interpret as variables
#device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device = 'cpu'
element = model_name.split('_')[1].split('.pt')[0]
model_path = './pretrainedCPU/'+model_name
df_label = pd.read_csv('./labels/label_'+element+'.csv', index_col=0)
n_class = len(np.unique(df_label.iloc[:,0]))
# load expert model
expert = Net1D(
in_channels=1,
base_filters=64,
ratio=1.0,
filter_list=[64,160,160,400,400,1024,1024],
m_blocks_list=[2,2,2,3,3,4,4],
kernel_size=16,
stride=2,
groups_width=16,
n_classes=n_class,
verbose=False)
expert.dense = AdaCos(1024, n_class)
expert.load_state_dict(torch.load(model_path))
# adjust prediction for the whole MoE model
l_labels = list(df_label.iloc[:,0])
materials = [
''.join(
sorted(
df_label.index[l_labels.index(label)].split(' ')
)
) for label in range(n_class)
]
df_all = pd.read_csv('./all_labels.csv', index_col=0)
label_names = list(df_all.index)
label_convert = [label_names.index(material) for material in materials]
n_class_all =len(label_names)
# wrap raw expert model into adjusted model
model = expert_model(expert, n_class_all, label_convert)
model.to(device)
model.eval()
model.zero_grad()
return model
class SparseDispatcher(object):
"""Helper for implementing a mixture of experts.
The purpose of this class is to create input minibatches for the
experts and to combine the results of the experts to form a unified
output tensor.
There are two functions:
dispatch - take an input Tensor and create input Tensors for each expert.
combine - take output Tensors from each expert and form a combined output
Tensor. Outputs from different experts for the same batch element are
summed together, weighted by the provided "gates".
The class is initialized with a "gates" Tensor, which specifies which
batch elements go to which experts, and the weights to use when combining
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0.
The inputs and outputs are all two-dimensional [batch, depth].
Caller is responsible for collapsing additional dimensions prior to
calling this class and reshaping the output to the original shape.
See common_layers.reshape_like().
Example use:
gates: a float32 `Tensor` with shape `[batch_size, num_experts]`
inputs: a float32 `Tensor` with shape `[batch_size, input_size]`
experts: a list of length `num_experts` containing sub-networks.
dispatcher = SparseDispatcher(num_experts, gates)
expert_inputs = dispatcher.dispatch(inputs)
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)]
outputs = dispatcher.combine(expert_outputs)
The preceding code sets the output for a particular example b to:
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b]))
This class takes advantage of sparsity in the gate matrix by including in the
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`.
"""
def __init__(self, num_experts, gates):
"""Create a SparseDispatcher."""
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self._gates = gates
self._num_experts = num_experts
# sort experts
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0)
# drop indices
_, self._expert_index = sorted_experts.split(1, dim=1)
# get according batch index for each expert
self._batch_index = sorted_experts[index_sorted_experts[:, 1],0]
# calculate num samples that each expert gets
self._part_sizes = list((gates > 0).sum(0).cpu().numpy())
# expand gates to match with self._batch_index
gates_exp = gates[self._batch_index.flatten()]
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index)
def dispatch(self, inp):
"""Create one input Tensor for each expert.
The `Tensor` for a expert `i` contains the slices of `inp` corresponding
to the batch elements `b` where `gates[b, i] > 0`.
Args:
inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]`
Returns:
a list of `num_experts` `Tensor`s with shapes
`[expert_batch_size_i, <extra_input_dims>]`.
"""
# assigns samples to experts whose gate is nonzero
# expand according to batch index so we can just split by _part_sizes
inp_exp = inp[self._batch_index].squeeze(1).unsqueeze(1)
return torch.split(inp_exp, self._part_sizes, dim=0)
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# apply exp to expert outputs, so we are not longer in log space
stitched = torch.cat(expert_out, 0).exp().to(self.device)
if multiply_by_gates:
stitched = stitched.mul(self._nonzero_gates).to(self.device)
zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), requires_grad=True).to(self.device)
# combine samples that have been processed by the same k experts
combined = zeros.index_add(0, self._batch_index, stitched.float())
# add eps to all zero values in order to avoid nans when going back to log space
combined[combined == 0] = np.finfo(float).eps
# back to log space
return combined.log()
def expert_to_gates(self):
"""Gate values corresponding to the examples in the per-expert `Tensor`s.
Returns:
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32`
and shapes `[expert_batch_size_i]`
"""
# split nonzero gates for each expert
return torch.split(self._nonzero_gates, self._part_sizes, dim=0)
class MoE_HDM(nn.Module):
def __init__(self, input_size, l_experts, noisy_gating=True, k=4):
super(MoE_HDM, self).__init__()
self.noisy_gating = noisy_gating
self.num_experts = len(l_experts)
self.list_experts = l_experts
self.input_size = input_size
self.k = k
# instantiate experts
self.w_gate = nn.Parameter(torch.zeros(input_size, self.num_experts), requires_grad=True)
self.w_noise = nn.Parameter(torch.zeros(input_size, self.num_experts), requires_grad=True)
self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)
self.normal = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
self.experts = nn.ModuleList(
[
HDM(model_name) for model_name in self.list_experts
]
)
assert(self.k <= self.num_experts)
def cv_squared(self, x):
eps = 1e-10
# if only num_experts = 1
if x.shape[0] == 1:
return torch.Tensor([0])
return x.float().var() / (x.float().mean()**2 + eps)
def _gates_to_load(self, gates):
return (gates > 0).sum(0)
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
batch = clean_values.size(0)
m = noisy_top_values.size(1)
top_values_flat = noisy_top_values.flatten()
threshold_positions_if_in = torch.arange(batch) * m + self.k
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(noisy_values, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat,0 , threshold_positions_if_out), 1)
# is each value currently in the top k.
prob_if_in = self.normal.cdf((clean_values - threshold_if_in)/noise_stddev)
prob_if_out = self.normal.cdf((clean_values - threshold_if_out)/noise_stddev)
prob = torch.where(is_in, prob_if_in, prob_if_out)
return prob
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
clean_logits = x @ self.w_gate
if self.noisy_gating:
raw_noise_stddev = x @ self.w_noise
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon) * train)
noisy_logits = clean_logits + ( torch.randn_like(clean_logits) * noise_stddev)
logits = noisy_logits
else:
logits = clean_logits
# calculate topk + 1 that will be needed for the noisy gates
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1)
top_k_logits = top_logits[:, :self.k]
top_k_indices = top_indices[:, :self.k]
top_k_gates = self.softmax(top_k_logits)
zeros = torch.zeros_like(logits, requires_grad=True)
gates = zeros.scatter(1, top_k_indices, top_k_gates)
if self.noisy_gating and self.k < self.num_experts:
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
else:
load = self._gates_to_load(gates)
return gates, load
def forward(self, x, train=True, loss_coef=1e-2):
gates, load = self.noisy_top_k_gating(x, train)
importance = gates.sum(0)
loss = self.cv_squared(importance) + self.cv_squared(load)
loss *= loss_coef
dispatcher = SparseDispatcher(self.num_experts, gates)
expert_inputs = dispatcher.dispatch(x)
gates = dispatcher.expert_to_gates()
expert_outputs = [self.experts[i](expert_inputs[i]) for i in range(self.num_experts)]
y = dispatcher.combine(expert_outputs)
return y, loss
class HDM_preprocessed():
def __init__(self,
model_name):
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.element = model_name.split('_')[1].split('.pt')[0]
self.n_class = len(pd.read_csv('./all_labels.csv', index_col=0))
def forward(self, x):
input = np.zeros([len(x), self.n_class])
for idx, name in enumerate(list(x)):
conv_name = './extraction/'+name.split('.pkl')[0]+'_'+self.element+'.pkl'
with open(conv_name, 'rb') as web:
pred = pickle.load(web)
input[idx] = pred
pred = torch.from_numpy(input).float().to(self.device)
return pred
class MoE_preprocessed(nn.Module):
def __init__(self, input_size, l_experts, noisy_gating=True, k=4):
super(MoE_preprocessed, self).__init__()
self.noisy_gating = noisy_gating
self.num_experts = len(l_experts)
self.list_experts = l_experts
self.input_size = input_size
self.k = k
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# instantiate experts
self.w_gate = nn.Parameter(torch.zeros(input_size, self.num_experts), requires_grad=True)
self.w_noise = nn.Parameter(torch.zeros(input_size, self.num_experts), requires_grad=True)
self.softplus = nn.Softplus()
self.softmax = nn.Softmax(1)
self.normal = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
self.experts = [
HDM_preprocessed(model_name) for model_name in self.list_experts
]
assert(self.k <= self.num_experts)
def cv_squared(self, x):
eps = 1e-10
# if only num_experts = 1
if x.shape[0] == 1:
return torch.Tensor([0])
return x.float().var() / (x.float().mean()**2 + eps)
def _gates_to_load(self, gates):
return (gates > 0).sum(0)
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values):
batch = clean_values.size(0)
m = noisy_top_values.size(1)
top_values_flat = noisy_top_values.flatten()
threshold_positions_if_in = torch.arange(batch) * m + self.k
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in), 1)
is_in = torch.gt(noisy_values, threshold_if_in)
threshold_positions_if_out = threshold_positions_if_in - 1
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat,0 , threshold_positions_if_out), 1)
# is each value currently in the top k.
prob_if_in = self.normal.cdf((clean_values - threshold_if_in)/noise_stddev)
prob_if_out = self.normal.cdf((clean_values - threshold_if_out)/noise_stddev)
prob = torch.where(is_in, prob_if_in, prob_if_out)
return prob
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2):
input = np.zeros([len(x),6000])
for idx, name in enumerate(list(x)):
with open('./pickles/'+name, 'rb') as web:
pred = pickle.load(web)
input[idx] = pred
x = torch.from_numpy(input).float().to(self.device)
clean_logits = x @ self.w_gate
if self.noisy_gating:
raw_noise_stddev = x @ self.w_noise
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon) * train)
noisy_logits = clean_logits + ( torch.randn_like(clean_logits) * noise_stddev)
logits = noisy_logits
else:
logits = clean_logits
# calculate topk + 1 that will be needed for the noisy gates
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim=1)
top_k_logits = top_logits[:, :self.k]
top_k_indices = top_indices[:, :self.k]
top_k_gates = self.softmax(top_k_logits)
zeros = torch.zeros_like(logits, requires_grad=True)
gates = zeros.scatter(1, top_k_indices, top_k_gates)
if self.noisy_gating and self.k < self.num_experts:
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0)
else:
load = self._gates_to_load(gates)
return gates, load
def forward(self, x, train=True, loss_coef=1e-2):
gates, load = self.noisy_top_k_gating(x, train)
importance = gates.sum(0)
loss = self.cv_squared(importance) + self.cv_squared(load)
loss *= loss_coef
dispatcher = SparseDispatcher(self.num_experts, gates)
#expert_inputs = dispatcher.dispatch(x)
gates = dispatcher.expert_to_gates()
expert_outputs = [self.experts[i].forward(x) for i in range(self.num_experts)]
y = dispatcher.combine(expert_outputs)
return y, loss
def split_datalist(data_path, r_split=0.7):
l_all = os.listdir(data_path)
n_test = int(len(l_all)*(1-r_split)/2)
l_val = random.choices(l_all, k=n_test)
l_test_tmp = list(set(l_all) ^ set(l_val))
l_test = random.choices(l_test_tmp, k=n_test)
l_train = list(set(l_test_tmp) ^ set(l_test))
return l_train, l_val, l_test
class MoEDataset(Dataset):
def __init__(self, data_list, train=True, n_train=10):
self.data_list = data_list
self.train = train
self.n_train = n_train
def __getitem__(self, index):
if self.train:
index = random.randint(0, len(self.data_list))
pickle_path = './pickles/'+self.data_list[index]
with open(pickle_path, 'rb') as web:
data = pickle.load(web)
data = torch.from_numpy(data)
label = torch.tensor(int(self.data_list[index].split('_')[0]), dtype=torch.long)
return (data, label)
def __len__(self):
length = len(self.data_list)
if self.train:
length = self.n_train
return length
class MoEDataset_extract(Dataset):
def __init__(self, data_list):
self.data_list = data_list
def __getitem__(self, index):
name = self.data_list[index]
pickle_path = './pickles/'+name
with open(pickle_path, 'rb') as web:
data = pickle.load(web)
data = torch.from_numpy(data)
label = torch.tensor(int(name.split('_')[0]), dtype=torch.long)
return (data, label, name)
def __len__(self):
return len(self.data_list)
def setup_dataloaders(data_path, batch_size, r_split=0.7, n_train=100):
l_train, l_val, l_test = split_datalist(data_path, r_split=r_split)
dataset_train = MoEDataset(l_train, train=True, n_train=n_train)
dataset_val = MoEDataset(l_val, train=False)
dataset_test = MoEDataset(l_test, train=False)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=False)
dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=batch_size, shuffle=False)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size, shuffle=False)
return (dataloader_train, dataloader_val, dataloader_test)
class MoEDataset_preprocessed(Dataset):
def __init__(self, data_list):
self.data_list = data_list
def __getitem__(self, index):
name = self.data_list[index]
label = torch.tensor(int(name.split('_')[0]), dtype=torch.long)
return (name, label)
def __len__(self):
return len(self.data_list)
def split_datalist_preprocessed(data_csv_path, r_split=0.7):
l_conv = np.array(pd.read_csv(data_csv_path, index_col=0)).squeeze().tolist()
# split train
label_all = [pkl.split('_')[0] for pkl in l_conv]
label_unique = np.unique(label_all)
l_train = [
l_conv[label_all.index(label)] for label in label_unique
]
l_rest = list(set(l_conv) ^ set(l_train))
n_train_rest = int(2 * (r_split - 0.5) * len(l_rest))
l_train_rest = random.choices(l_rest, k=n_train_rest)
l_train = l_train + l_train_rest
# split val/test
l_rest = list(set(l_rest) ^ set(l_train_rest))
n_val = int(0.5 * len(l_rest))
l_val = random.choices(l_rest, k=n_val)
l_test = list(set(l_rest) ^ set(l_val))
return l_train, l_val, l_test
def setup_dataloaders_preprocessed(data_csv_path, batch_size, r_split=0.7):
l_train, l_val, l_test = split_datalist_preprocessed(data_csv_path, r_split=r_split)
dataset_train = MoEDataset_preprocessed(l_train)
dataset_val = MoEDataset_preprocessed(l_val)
dataset_test = MoEDataset_preprocessed(l_test)
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=batch_size, shuffle=False)
dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=batch_size, shuffle=False)
return (dataloader_train, dataloader_val, dataloader_test)