-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
utils.py
72 lines (58 loc) · 1.88 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import skimage
import skimage.io
import skimage.transform
import numpy as np
# synset = [l.strip() for l in open('synset.txt').readlines()]
# returns image of shape [224, 224, 3]
# [height, width, depth]
def load_image(path):
# load image
img = skimage.io.imread(path)
img = img / 255.0
assert (0 <= img).all() and (img <= 1.0).all()
# print "Original Image Shape: ", img.shape
# we crop image from center
short_edge = min(img.shape[:2])
yy = int((img.shape[0] - short_edge) / 2)
xx = int((img.shape[1] - short_edge) / 2)
crop_img = img[yy: yy + short_edge, xx: xx + short_edge]
# resize to 224, 224
resized_img = skimage.transform.resize(crop_img, (224, 224))
return resized_img
# returns the top1 string
def print_prob(prob, file_path):
synset = [l.strip() for l in open(file_path).readlines()]
# print prob
pred = np.argsort(prob)[::-1]
# Get top1 label
top1 = synset[pred[0]]
print(("Top1: ", top1, prob[pred[0]]))
# Get top5 label
top5 = [(synset[pred[i]], prob[pred[i]]) for i in range(5)]
print(("Top5: ", top5))
return top1
def load_image2(path, height=None, width=None):
# load image
img = skimage.io.imread(path)
img = img / 255.0
if height is not None and width is not None:
ny = height
nx = width
elif height is not None:
ny = height
nx = img.shape[1] * ny / img.shape[0]
elif width is not None:
nx = width
ny = img.shape[0] * nx / img.shape[1]
else:
ny = img.shape[0]
nx = img.shape[1]
return skimage.transform.resize(img, (ny, nx))
def test():
img = skimage.io.imread("./test_data/starry_night.jpg")
ny = 300
nx = img.shape[1] * ny / img.shape[0]
img = skimage.transform.resize(img, (ny, nx))
skimage.io.imsave("./test_data/test/output.jpg", img)
if __name__ == "__main__":
test()