-
Notifications
You must be signed in to change notification settings - Fork 0
/
matrix.h
406 lines (327 loc) · 9.9 KB
/
matrix.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
/**
* matrix.h
* Purpose: general matrix operations
*
* @author Manuel Infosec
* @version 1.0
*/
#ifndef MATRIX_H
#define MATRIX_H
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <exception>
#include <iostream>
#include <vector>
/**
* degenerate_matrix_error class, thrown whenever one tries to invert a degenerate matrix
*/
class degenerate_matrix_error : public std::exception {
public:
virtual const char* what() const throw() {
return "Attempted to take the inverse of degenerate matrix!";
}
};
/**
* matrix class, for representation and manipulation of matrices
*
* @param T the data type being stored in the matrix.
*/
template <typename T = int>
class matrix {
private:
std::vector<std::vector<T>> data;
public:
/**
* Default matrix constructor. All entries are set to their default.
*
* @param Rows the number of rows in the matrix.
* @param Columns the number of columns in the matrix.
*/
inline matrix (size_t Rows, size_t Columns) {
for(size_t i = 0; i < Rows; ++ i) {
data.push_back(std::vector<T>(Columns, T()));
}
}
/**
* Alternate matrix constructor. All entries are set to t.
*
* @param Rows the number of rows in the matrix.
* @param Columns the number of columns in the matrix.
* @param t the value to set all entries equal to.
*/
inline matrix (size_t Rows, size_t Columns, T t) {
for(size_t i = 0; i < Rows; ++ i) {
data.emplace_back(Columns, t);
}
}
/**
* Copy constructor.
*
* @param m the matrix to copy.
*/
inline matrix (const matrix<T> &m) {
for(size_t i = 0; i < m.rows(); ++ i) {
data.push_back(std::vector<T>());
for(size_t j = 0; j < m.columns(); ++ j) {
data[i].push_back(m(i,j));
}
}
}
/**
* Returns the identity matrix of size N x N.
*
* @return a N x N identity matrix, if such a matrix is valid.
*/
static inline matrix<T> identity(size_t N) {
matrix<T>ret = matrix(N, N, T(0));
for(size_t i = 0; i < N; ++ i)
ret(i,i) = 1;
return ret;
}
/**
* Retrieves the number of rows in the matrix.
*
* @return the number of rows in the matrix.
*/
inline size_t rows() const {
if(data.empty()) {
return 0;
}
return data.size();
}
/**
* Retrieves the number of columns in the matrix.
*
* @return the number of columns in the matrix.
*/
inline size_t columns() const {
if(data.empty()) {
return 0;
}
return data[0].size();
}
/**
* Adds two matrices together and returns their result
*
* @param m the matrix to add.
* @return the sum of the two matrices.
*/
inline matrix<T> operator + (const matrix<T> &m) const {
assert(rows() == m.rows() && columns() == m.columns());
matrix<T> ret;
for(size_t i = 0; i < rows(); ++ i) {
for(size_t j = 0; j < columns(); ++ j) {
ret[i][j] = data[i][j] + m[i][j];
}
}
return ret;
}
/**
* Negates all entries in the matrix.
*
* @return the matrix scaled by -1.
*/
inline matrix<T> operator - () const {
matrix<T> ret;
for(size_t i = 0; i < rows(); ++ i) {
for(size_t j = 0; j < columns(); ++ j) {
ret(i,j) = -data[i][j];
}
}
return ret;
}
/**
* Subtracts two matrices and returns their result.
*
* @param m the matrix to subtract.
* @return the difference of the two matrices.
*/
inline matrix<T> operator - (const matrix<T> &m) const {
return (*this) + -m;
}
/**
* Scales a matrix by a constant factor.
*
* @param t the constant to scale the matrix by.
* @return the matrix scaled by t.
*/
inline matrix<T> operator * (const T t) const {
matrix<T> ret(*this);
for(size_t i = 0; i < rows(); ++ i)
for(size_t j = 0; j < columns(); ++ j)
ret(i,j) = ret(i,j) * t;
return ret;
}
/**
* Multiplies two matrices together and returns their result.
*
* @param m the matrix to multiply by.
* @return the result of multiplying the two matrices.
*/
inline matrix<T> operator * (const matrix<T> & m) const {
assert(columns() == m.rows());
matrix<T> ret = matrix(rows(), m.columns(), T(0));
// The unusual order of loops is an optimization
for(size_t i = 0; i < rows(); ++ i) {
for(size_t k = 0; k < columns(); ++ k) {
for(size_t j = 0; j < m.columns(); ++ j) {
ret(i,j) = ret(i, j) + data[i][k] * m(k,j);
}
}
}
return ret;
}
/**
* Computes the inverse of the matrix.
*
* @param T1 the data type of the inverted matrix.
* @return the inverse matrix.
* @throws degenernate_matrix_error if the matrix is degenerate
*/
template<typename T1 = long double>
inline matrix<T1> inverse() const {
assert(rows() == columns());
matrix<T1> tmp = matrix(*this);
matrix<T1> ret = matrix<T1>::identity(rows());
// This is where the fun starts...
for(size_t i = 0, j; i < rows(); ++ i) {
for(j = i; j < rows() && tmp(j,i) == T1(0); ++ j);
if(j == rows()) {
throw degenerate_matrix_error();
}
if(i != j) {
for(size_t k = i; k < columns(); ++ k) {
std::swap(tmp(i,k), tmp(j,k));
std::swap(ret(i,k), ret(j,k));
}
}
for(int j = 0; j < columns(); ++ j) {
if(j == i) continue;
tmp(i,j) = tmp(i,j) / tmp(i,i);
ret(i,j) = ret(i,j) / tmp(i,i);
}
ret(i,i) = ret(i,i) / tmp(i,i);
tmp(i,i) = 1.0;
for(j = 0; j < rows(); ++ j) {
if(j == i) continue;
T1 entry = tmp(j,i);
for(size_t k = 0; k < columns(); ++k) {
tmp(j,k) = tmp(j,k) - (tmp(i,k) / tmp(i,i)) * entry;
ret(j,k) = ret(j,k) - (ret(i,k) / tmp(i,i)) * entry;
}
}
}
return ret;
}
/**
* Computes the matrix determinant.
*
* @param T1 the data type of the determinant.
* @return the determinant.
*/
template<typename T1 = long double>
inline T1 determinant() const {
assert(rows() == columns());
matrix<T1> tmp = matrix(*this);
T1 res = T1(1);
bool b = 0;
for(size_t i = 0, j; i < rows() - 1; ++ i) {
for(j = i; j < rows() && tmp(j,i) == T1(0); ++ j);
if(j == rows()) {
return T1(0);
}
if(i != j) {
for(size_t k = i; k < columns(); ++ k) {
std::swap(tmp(i,k), tmp(j,k));
}
b ^= 1;
}
for(j = i + 1; j < rows(); ++ j) {
T entry = tmp(j,i);
for(size_t k = i; k < columns(); ++ k) {
tmp(j,k) = tmp(j,k) - (tmp(i,k) / tmp(i,i)) * entry;
}
}
}
for(size_t i = 0; i < rows(); ++ i)
res = res * tmp(i,i);
return b ? -res : res;
}
/**
* Allows access to the matrix entries.
*
* @param row the row the entry is in.
* @param column the column the entry is in.
* @return a reference corresponding the the [row][column]-th element of the matrix.
*/
inline T &operator () (size_t row, size_t column) {
return data[row][column];
}
/**
* Allows access to the matrix entries.
*
* @param row the row the entry is in.
* @param column the column the entry is in.
* @return a const_reference corresponding to the [row][column]-th element of the matrix.
*/
inline const T &operator () (size_t row, size_t column) const {
return data[row][column];
}
/**
* Checks if two matrices are not equal to each other.
*
* @param m the matrix to compare to.
* @return true if the two are not equal, and false otherwise.
*/
inline bool operator != (const matrix<T> &m) const {
if(rows() != m.rows() || columns() != m.columns()) return true;
for(size_t i = 0; i < rows(); ++ i)
for(size_t j = 0; j < columns(); ++ j)
if(data[i][j] != m[i][j])
return true;
return false;
}
/**
* Checks if two matrices are equal to each other.
*
* @param m the matrix to compare to.
* @return true if the two are equal, and false otherwise.
*/
inline bool operator == (const matrix<T> &m) const {
return !((*this) != m);
}
/**
* Computes the transpose of the matrix.
*
* @return the transposed matrix.
*/
inline matrix transpose() const {
matrix ret = matrix(columns(), rows());
for(size_t i = 0; i < rows(); ++ i)
for(size_t j = 0; j < columns(); ++ j)
ret(j,i) = data[i][j];
return ret;
}
};
/**
* Override to print a matrix with an std::ostream.
*
* @param out the ostream to print on.
* @param m the matrix to print.
* @return out.
*/
template <typename T>
std::ostream& operator <<(std::ostream &out, const matrix<T> &m){
for(size_t i = 0; i < m.rows(); ++ i){
for(size_t j = 0; j < m.columns(); ++ j) {
out << m(i,j);
if(j < m.columns() - 1){
out << " ";
}
}
out << "\n";
}
return out;
}
#endif