-
Notifications
You must be signed in to change notification settings - Fork 0
/
threadxx.cpp
245 lines (204 loc) · 4.72 KB
/
threadxx.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
#include <iostream>
#include "ticktock.h"
#include "threadxx.h"
// Erik Rigtorp
struct spinlock {
std::atomic<bool> lock_ = {0};
void lock() noexcept {
for (;;) {
// Optimistically assume the lock is free on the first try
if (!lock_.exchange(true, std::memory_order_acquire)) {
return;
}
// Wait for lock to be released without generating cache misses
while (lock_.load(std::memory_order_relaxed)) {
// Issue X86 PAUSE or ARM YIELD instruction to reduce contention between
// hyper-threads
//__builtin_ia32_pause();
std::this_thread::yield();
}
}
}
bool try_lock() noexcept {
// First do a relaxed load to check if lock is free in order to prevent
// unnecessary cache misses if someone does while(!try_lock())
return !lock_.load(std::memory_order_relaxed) &&
!lock_.exchange(true, std::memory_order_acquire);
}
void unlock() noexcept {
lock_.store(false, std::memory_order_release);
}
};
template <class Spinlock>
void test_spinlock() {
class MyThread : public threadxx::Thread {
private:
Spinlock& lock;
uint64_t t;
public:
MyThread(Spinlock& lock) : lock(lock), t(0) {
}
~MyThread() {
Quit();
std::cout << "timer = " << t / 1000000 << std::endl;
}
virtual void OnMessage(threadxx::Message&) {
ticktock tt(t);
for (int i = 0; i < 100000000; i++) {
lock.lock();
lock.unlock();
}
}
};
Spinlock lock;
MyThread t1(lock), t2(lock);
t1.PostMessage(1);
t2.PostMessage(1);
}
// threadxx::Semaphore - previous implement
class Semaphore {
private:
int count;
std::mutex mtx;
std::condition_variable cv;
private:
int Try() {
if (count == 0) {
return -1;
} else {
--count;
return 0;
}
}
public:
Semaphore(int ninit = 0) : count(ninit) {
}
int Post() {
mtx.lock();
++count;
mtx.unlock();
cv.notify_one();
return 0;
}
int Post(int n) {
mtx.lock();
count += n;
mtx.unlock();
while (n > 0) {
cv.notify_one();
--n;
}
return 0;
}
int Wait() {
std::unique_lock<std::mutex> lock(mtx);
while (Try()) cv.wait(lock);
return 0;
}
int TryWait() {
std::unique_lock<std::mutex> lock(mtx);
return Try();
}
int TimedWait(int msec) {
std::unique_lock<std::mutex> lock(mtx);
if (Try()) {
cv.wait_for(lock, std::chrono::milliseconds(msec));
return Try();
}
return 0;
}
int Wait(int msec) {
if (msec < 0)
return Wait();
else if (msec == 0)
return TryWait();
else
return TimedWait(msec);
}
};
template <class Sema>
void test_semaphore() {
class MyThread : public threadxx::Thread {
private:
Sema& sema;
uint64_t t;
public:
MyThread(Sema& sema) : sema(sema), t(0) {
}
~MyThread() {
Quit();
std::cout << "timer = " << t / 1000000 << std::endl;
}
void OnMessage(threadxx::Message&) {
ticktock tt(t);
for (int i = 0; i < 10000000; i++) {
sema.Wait();
sema.Post();
}
}
};
Sema sema(1);
MyThread t1(sema), t2(sema);
t1.PostMessage(1);
t2.PostMessage(1);
}
// threadxx::BlockingQueue - previouse implement
template <typename T>
class BlockingQueue : public threadxx::SafeQueue<T> {
private:
threadxx::Semaphore sem;
public:
void Push(const T& t) {
threadxx::SafeQueue<T>::Push(t);
sem.Post();
}
int Pop(T& t, int timeout = -1) {
if (sem.Wait(timeout) == 0)
return threadxx::SafeQueue<T>::Pop(t);
else
return -1;
}
};
template <class Q>
void test_blocking_queue() {
class MyThread : public threadxx::Thread {
private:
Q& q;
uint64_t t;
public:
MyThread(Q& q) : q(q), t(0) {
}
~MyThread() {
Quit();
std::cout << "timer = " << t / 1000000 << std::endl;
}
void OnMessage(threadxx::Message&) {
ticktock tt(t);
for (int i = 0; i < 10000000; i++) {
int x = 0;
q.Pop(x);
q.Push(x + 1);
}
}
};
Q q;
q.Push(0);
MyThread t1(q), t2(q);
t1.PostMessage(1);
t2.PostMessage(1);
}
int main() {
std::cout << "Testing spinlock" << std::endl;
test_spinlock<spinlock>();
std::cout << "Testing threadxx::Spinlock" << std::endl;
test_spinlock<threadxx::Spinlock>();
std::cout << "Testing Semaphore" << std::endl;
test_semaphore<Semaphore>();
std::cout << "Testing threadxx::Semaphore" << std::endl;
test_semaphore<threadxx::Semaphore>();
std::cout << "Testing BlockingQueue" << std::endl;
test_blocking_queue<BlockingQueue<int>>();
std::cout << "Testing threadxx::BlockingQueue" << std::endl;
test_blocking_queue<threadxx::BlockingQueue<int>>();
return 0;
}